

Microarray Center

APPLIED STATISTICS

Lecture 11 Advanced Topics

Petr Nazarov petr.nazarov@crp-sante.lu

26-11-2009

Lecture 11. Advanced topics

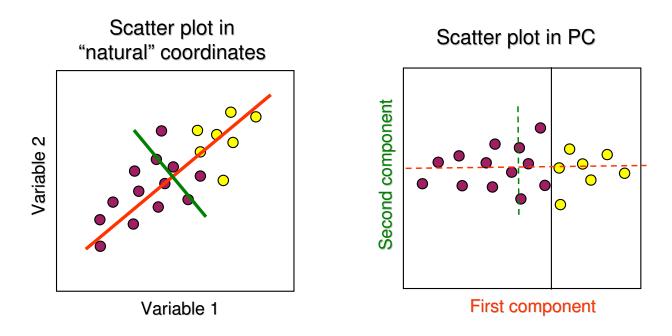
PRINCIPLE COMPONENT ANALYSIS

PCA Basics

Principal component analysis (PCA) is a vector space transform used to reduce multidimensional data sets to lower dimensions for analysis. It selects the coordinates along which the variation of the data is bigger.

20000 genes \rightarrow 2 dimensions

For the simplicity let us consider 2 parametric situation both in terms of data and resulting PCA.



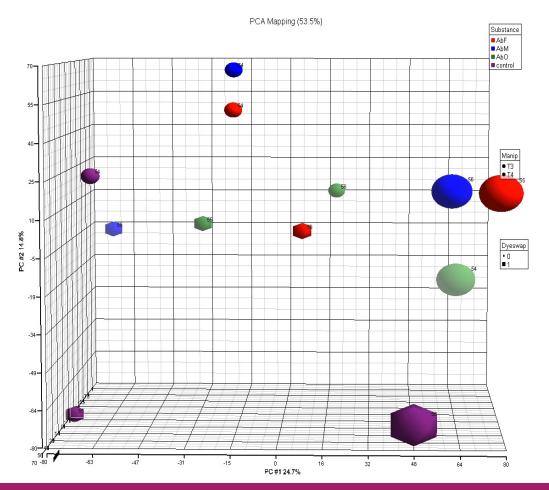
Instead of using 2 "natural" parameters for the classification, we can use the first component!

PRINCIPLE COMPONENT ANALYSIS

PCA Example in Partek

 Transcriptomic profile of a sample contains thousands of genes, i.e. thousands of coordinates/parameters.

✤ PCA is extremely useful for initial data analysis in transcriptomics, as it allows to depict thousands of parameters just in 2 or 3 dimension space.

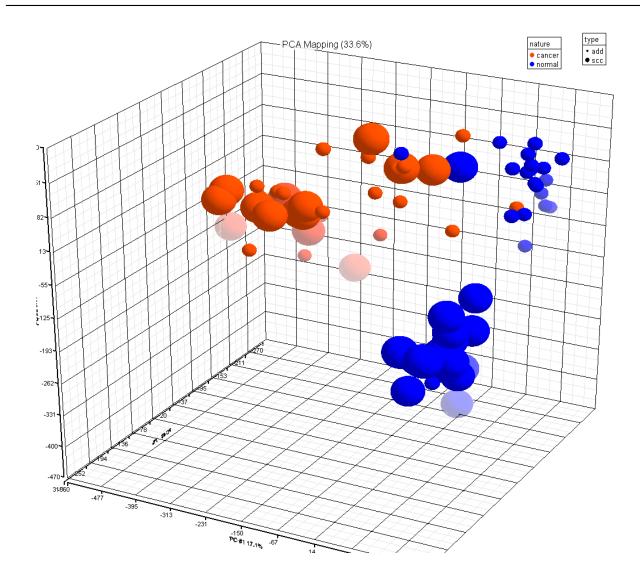


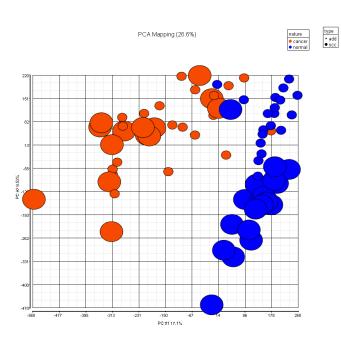
3 factors can influence the distribution of the variability:

- Substance
- Manip (bio replicate)
- Dye swap

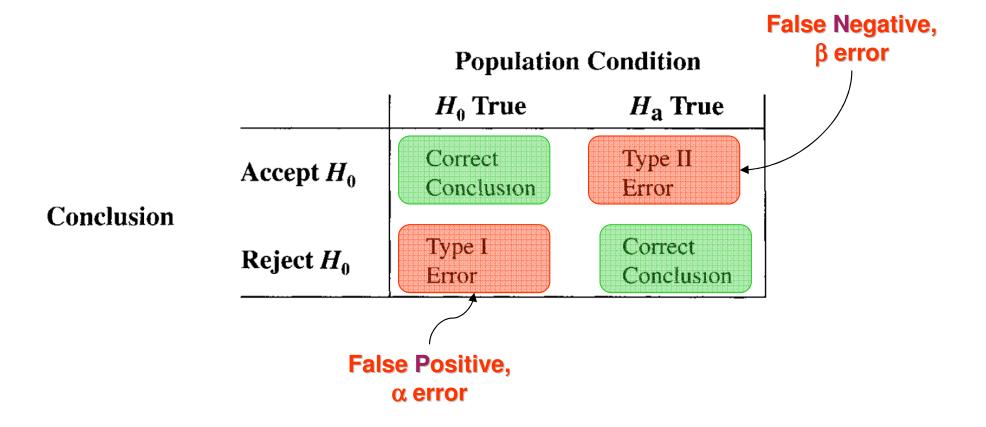
PRINCIPLE COMPONENT ANALYSIS

PCA Example in Partek 2





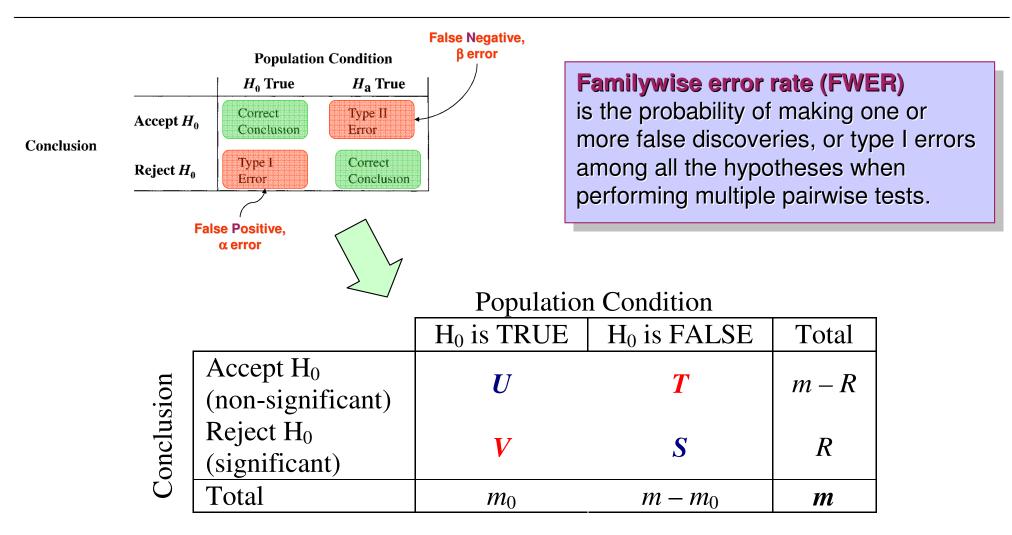
Correct Results and Errors



Probability of an error in a multiple test:

1-(0.95)number of comparisons

PCA Example in Partek 2



$$FWER = 1 - \mathbf{P}(V = 0)$$

Bonferroni Correction

Bonferroni correction

if an experimenter is testing **k** dependent or independent hypotheses on a set of data, then one way of maintaining the **FWER** is to test each individual hypothesis at a statistical significance level of **1**/**k** times what it would be if only one hypothesis were tested.

If you would like to be sure **FWER** < α , use pairwise testing with significance of α/k .

Assume we need to perform k = 10 comparisons, and selected $\alpha = 0.05$. Then

FWER(no correction) = $1-(1-\alpha)^{k} = 1-(0.95)^{10} = 0.401$

FWER(Bonferroni) = $1 - (1 - \alpha/n)^{k} = 1 - (0.995)^{10} = 0.0489$

Holm-Bonferroni method

more soft and precise method of significance adjustment.

0.03

0.045

MULTIPLE EXPERIMENTS

Holm-Bonferroni Method

Holm-Bonferroni method

more soft and precise method of significance adjustment.

Assume we need to perform k = 6 comparisons, and selected FWER = $\alpha = 0.05$

1. Order p-values of the pairwise t-test

p-value
0.00012. Compare first p-value with α/k .0.009
0.01IF: p-value < α/k , reject H₀ for this comparison and set k = k - 1
else: stop checking.0.02alfa

3. Repeat this comparison for all pvalues while **p-value** < α/k

	alta	
p-value	0.05	k
0.0001	0.008333	6
0.009	0.01	5
0.01	0.0125	4
0.02	0.016667	3
0.03		Stop
0.045		

Tratments:	A, B, C, D
Compare	p-value
A vs B	0.045
A vs C	0.02
A vs D	0.03
B vs C	0.009
B vs D	0.0001
C vs D	0.01

False Discovery Rate

False discovery rate (FDR)

FDR control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors).

		Population Condition		
		H ₀ is TRUE	H ₀ is FALSE	Total
sion	Accept H ₀ (non-significant)	U	T	m-R
Conclusion	Reject H ₀ (significant)	V	S	R
Ŭ	Total	m_0	$m-m_0$	т

$$FDR = E\left(\frac{V}{V+S}\right)$$

False Discovery Rate

Assume we need to perform k = 100 comparisons, and select maximum FDR = $\alpha = 0.05$

Independent tests

The Simes procedure ensures that its expected value ${
m E}igg[rac{V}{V+S}igg]$ is less than a given a (Benjamini and Hochberg

1995). This procedure is valid when the m tests are independent. Let $H_1 \dots H_m$ be the null hypotheses and $P_1 \dots P_m$ their corresponding p-values. Order these values in increasing order and denote them by

 $P_{(1)} \dots P_{(m)}$. For a given α , find the largest k such that $P_{(k)} \leq \frac{k}{m} \alpha$.

Then reject (i.e. declare positive) all $H_{(i)}$ for $i=1,\ldots,k$.

Note that the mean lpha for these m tests is $rac{lpha(m+1)}{2m}$ which could be used as a rough FDR, or RFDR, "lpha adjusted

for *m* indep. tests." The RFDR calculation shown here provides a useful approximation and is not part of the Benjamini and Hochberg method; see AFDR below.

[edit

Holm-Bonferroni Method: Example

Sum and Square of Normal Variables

Distribution of sum or difference of 2 normal random variables

The sum/difference of 2 (or more) normal random variables is a normal random variable with mean equal to sum/difference of the means and variance equal to SUM of the variances of the compounds.

$$x \pm y \rightarrow Normal \ distribution$$
$$E[x \pm y] = E[x] \pm E[y]$$
$$\sigma_{x \pm y}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2}$$

Distribution of sum of squares on *k* standard normal random variables

The sum of squares of *k* standard normal random variables is a χ^2 with *k* degree of freedom.

if
$$x_1, ..., x_k \to Normal distribution$$

$$\sum_{i=1}^k x_i^2 \to \chi^2 \quad with \ d.f. = k$$

What to do in more complex situations?

$$\frac{x}{y} \to ? \qquad \qquad \sqrt{x} \to ? \qquad \qquad \log(|x|) \to ?$$

Terrifying Theory

Try to solve analytically?

Simplest case.
$$E[x] = E[y] = 0$$

Ratio distribution

is a

From Wikipedia, the free encyclopedia

A **ratio distribution** (or *quotient distribution*) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio

$$Z = X/Y$$
ratio distribution.
$$p_Z(z) = \frac{b(z) \cdot c(z)}{a^3(z)} \frac{1}{\sqrt{2\pi}\sigma_x \sigma_y} \left[2\Phi\left(\frac{b(z)}{a(z)}\right) - 1 \right] + \frac{1}{a^2(z) \cdot \pi\sigma_x \sigma_y} e^{-\frac{1}{2}\left(\frac{\mu_x^2}{\sigma_x^2} + \frac{\mu_y^2}{\sigma_y^2}\right)}$$

where

$$\begin{split} a(z) &= \sqrt{\frac{1}{\sigma_x^2} z^2 + \frac{1}{\sigma_y^2}} \\ b(z) &= \frac{\mu_x}{\sigma_x^2} z + \frac{\mu_y}{\sigma_y^2} \\ c(z) &= e^{\frac{1}{2} \frac{b^2(z)}{a^2(z)} - \frac{1}{2} \left(\frac{\mu_x^2}{\sigma_x^2} + \frac{\mu_y^2}{\sigma_y^2}\right)} \\ \Phi(z) &= \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} \ du \end{split}$$

Practical Approach

Two rates where measured for a PCR experiment: experimental value (X) and control (Y). 5 replicates where performed for each.

From previous experience we know that the error between replicates is normally distributed.

Q1: provide an interval estimation for the fold change X/Y (α =0.05)

Q2: provide an interval estimation for the log fold change $log_2(X/Y)$

#	Experiment	Control
1	215	83
2	253	75
3	198	62
4	225	91
5	240	70
Mean	226.2	76.2
StDev	21.39	11.26

Let us use a *numerical simulation*...

Practical Approach

1. Generate 2 sets of 65536 normal random variable with means and standard deviations corresponding to ones of experimental and control set.

Mean	226.2	76.2
StDev	21.39	11.26

In Excel go: Tools \rightarrow Data Analysis:

Random Number Generation

If you do not have Data Analysis tool – approximate normal distribution by sum of uniform:

$$N(x, m_x, \sigma_x) = m_x + \sigma_x \left(\sum_{i=1}^{12} U(x_i) - 6 \right)$$

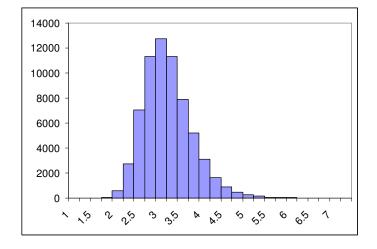
 \Rightarrow = RAND() \leftarrow U(x)

Random Number Gene	ration		
Number of <u>V</u> ariables: Number of Random Num <u>b</u> e	rs:	1 65536	OK Cancel
<u>D</u> istribution: Parameters M <u>e</u> an = <u>S</u> tandard deviation =	Normal 76.2 11.26		Help
Random Seed: Output options Output Range: New Worksheet Ply: New Workbook	\$G	i:\$G	

Practical Approach

 Generate 2 sets of 65536 normal random variable with means and standard deviations corresponding to ones of experimental and control set. 		Mean StDev	226.2 21.39	76.2 11.26
		sim.m sim.s	226.088799 21.379652	
2. Build the target function. For Q1 build X/Y	X/Y.m X/Y.s min max	3.03289298 0.566865 -8.14098141 7.72162205		

3. Study the target function. Calculate summary, build histogram.



4. If you would like to have 95% interval, calculate 2.5% and 97.5% percentiles.

In Excel use function

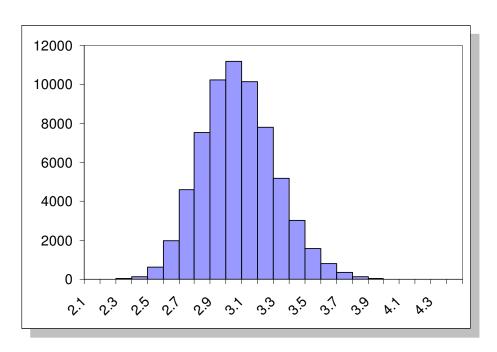
=PERCENTILE (data, 0.025)

Practical Approach

What was a "mistake" in the previous case?

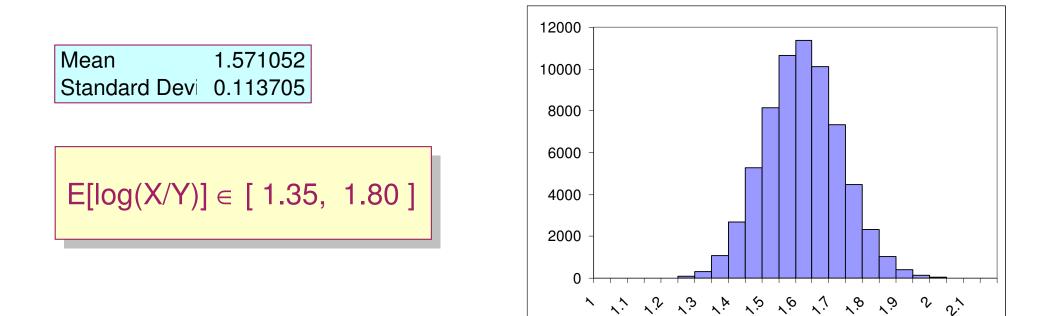
There we spoke about **prediction interval** of X/Y. Now let's produce the **interval estimation for mean X/Y**

Mean StDev	226.2 9.57	2 76.2 5.0 3	_
X/Y.m X/Y.s min max	2.98047943 0.23616818 2.01556098 4.31131109		
E[X/Y]	∈ [2.55,	3.48]	



Practical Approach

Q2: provide an interval estimation for the log fold change log2(X/Y)



S	Normal	
2.50%	1.3546	1.3482
97.50%	1.7998	1.7939

Thank you for your attention

Lecture 11. Advanced topics