

Microarray Center

APPLIED STATISTICS

Lecture 10 Linear Regression

Petr Nazarov petr.nazarov@crp-sante.lu

3-11-2009

Lecture 10. Regression

Lecture 10

Introduction to linear regression

- dependent and independent random variables
- scatter plot and linear trendline

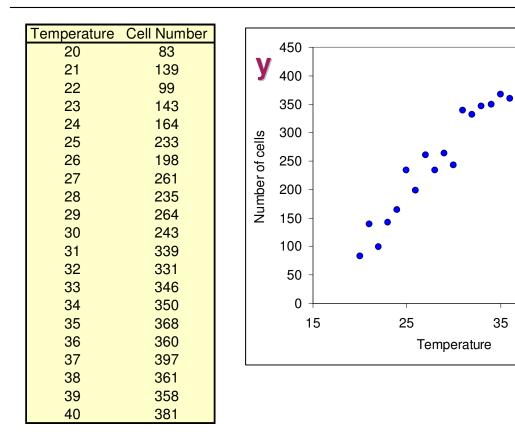
Testing for significance

- estimation of the noise variance
- interval estimations
- testing hypothesis about significance

Regression Analysis

- confidence and prediction
- multiple linear regression
- nonlinear regression

Experiments



Cells are grown under different temperature conditions from 20° to 40°. A researched would like to find a dependency between T and cell number.

Dependent variable

The variable that is being predicted or explained. It is denoted by y.

Independent variable

The variable that is doing the predicting or explaining. It is denoted by **x**.

45

X

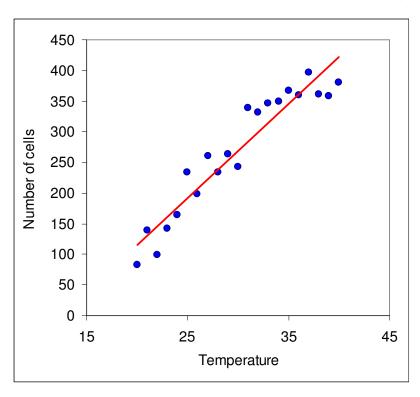
Lecture 10. Regression

Experiments

Simple linear regression

Regression analysis involving one independent variable and one dependent variable in which the relationship between the variables is approximated by a straight line.

• Building a *regression* means finding and tuning the model to explain the behaviour of the data



Experiments

Regression model

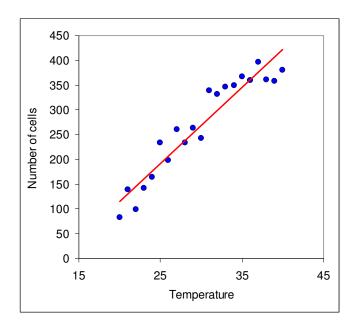
CI

CENTRE DE RECHERCHE PUBLI

The equation describing how y is related to x and an error term; in simple linear regression, the regression model is $y = \beta_0 + \beta_1 x + \varepsilon$

Regression equation

The equation that describes how the mean or expected value of the dependent variable is related to the independent variable; in simple linear regression, $E(y) = \beta_0 + \beta_1 x$

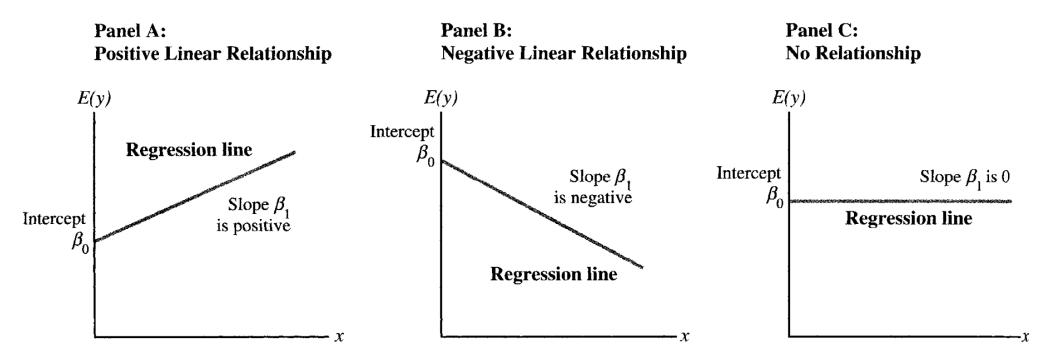


Model for a simple linear regression:

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$

Regression Model and Regression Line

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$



Experiments

The estimate of the regression equation developed from sample data by using the least squares method. For simple linear regression, the estimated regression equation is $y = b_0 + b_1 x$

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$
$$\mathbf{\hat{y}}(x) = b_1 x + b_0$$

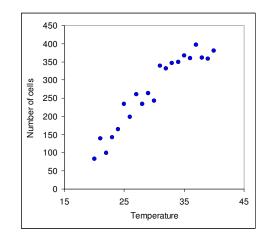
 $E[y(x)] = b_1 x + b_0$

cells.xls

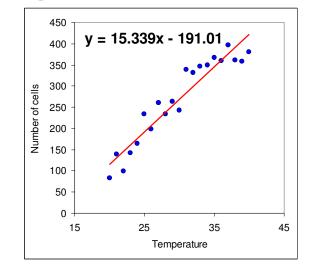
Cr

CENTRE DE RECHERCHE PUBLIC

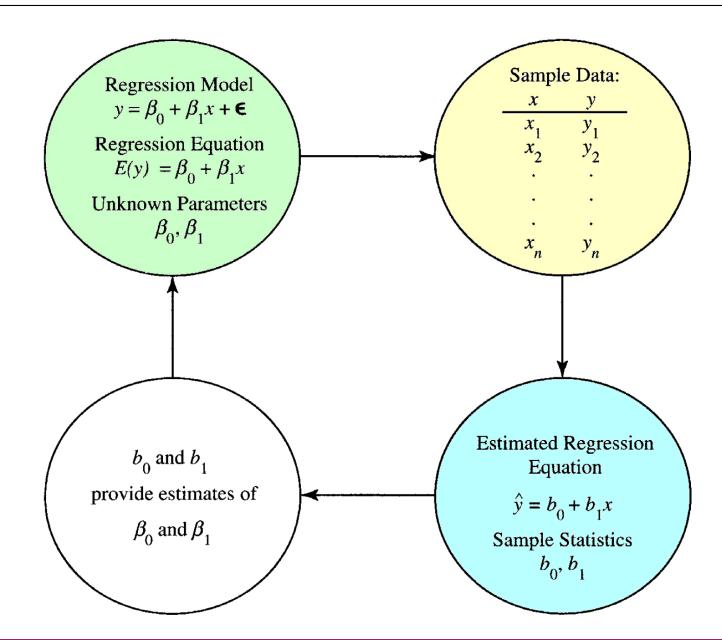
1. Make a scatter plot for the data.



2. Right click to "Add Trendline". Show equation.



Overview



Experiments

Least squares method A procedure used to develop the estimated regression equation.

The objective is to minimize $\sum (y_i - \hat{y}_i)^2$

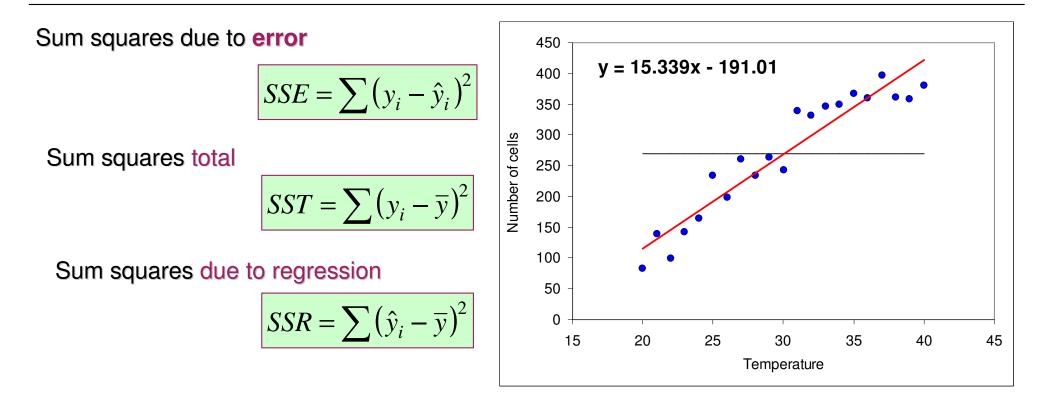
 y_i = observed value of the dependent variable for the *i*th observation \hat{y}_i = estimated value of the dependent variable for the *i*th observation

Intersect:

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(x_1 - \overline{x})^2}$$
Slope:

$$b_0 = \overline{y} - b_1 \overline{x}$$

Coefficient of Determination



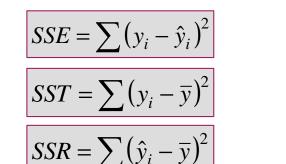
The Main Equation

$$SST = SSR + SSE$$

Cr

CENTRE DE RECHERCHE PUBLIC

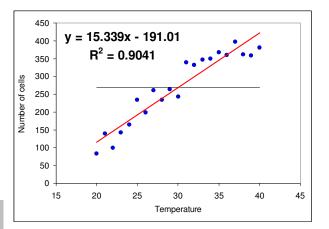
Coefficient of Determination

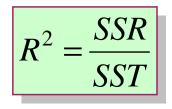


Coefficient of determination

A measure of the goodness of fit of the estimated regression equation. It can be interpreted as the proportion of the variability in the dependent variable *y* that is explained by the estimated regression equation.

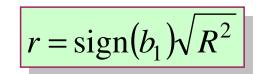
SST = SSR + SSE





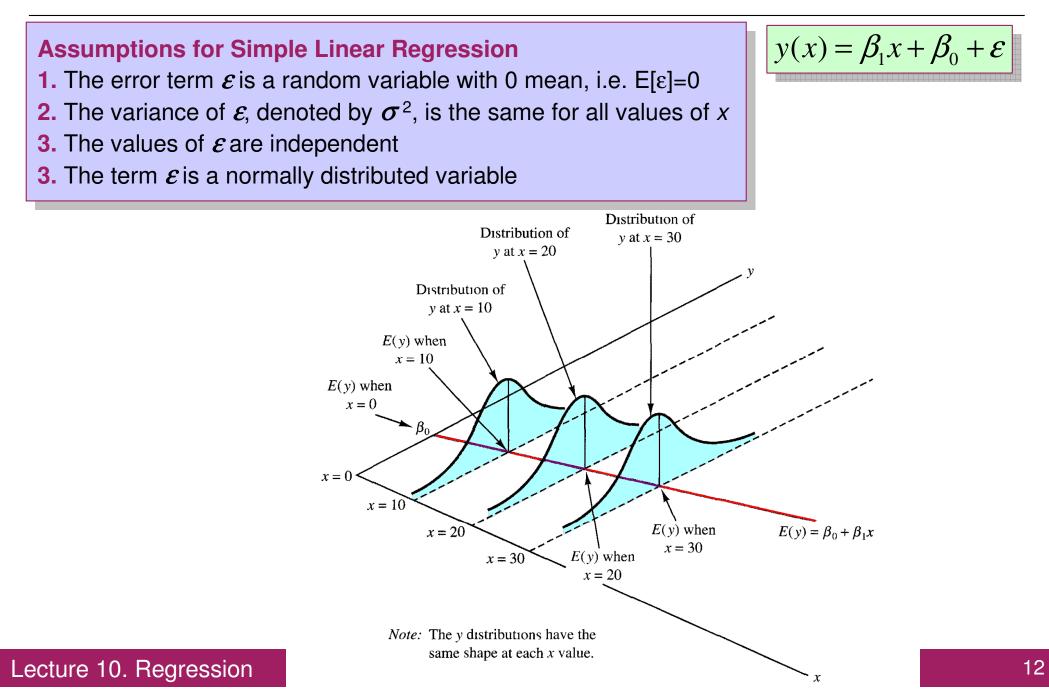
Correlation coefficient

A measure of the strength of the linear relationship between two variables (previously discussed in Lecture 1).



LINEAR REGRESSION

Assumptions



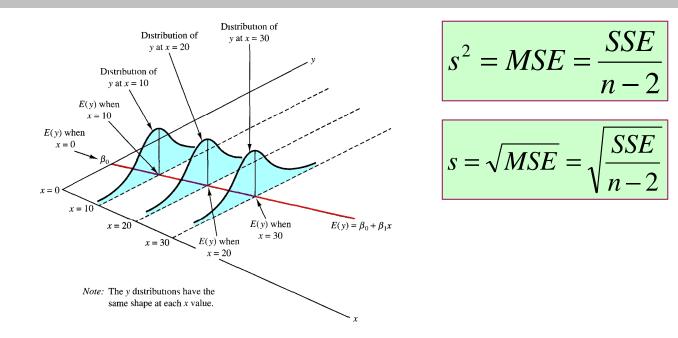
Estimation of σ^2

i-th residual

The difference between the observed value of the dependent variable and the value predicted using the estimated regression equation; for the *i*-th observation the *i*-th residual is: $y_i - \hat{y}_i$

Mean square error

The unbiased estimate of the variance of the error term σ^2 . It is denoted by MSE or s^2 . Standard error of the estimate: the square root of the mean square error, denoted by *s*. It is the estimate of σ , the standard deviation of the error term ε .



Sampling Distribution for *b*₁

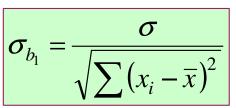
If assumptions for ϵ are fulfilled, then the sampling distribution for b_1 is as follows:

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$
$$\hat{y}(x) = b_1 x + b_0$$

Expected value

V

$$E[b_1] = \beta_1$$



Distribution:

normal

Interval Estimation for **b**₁

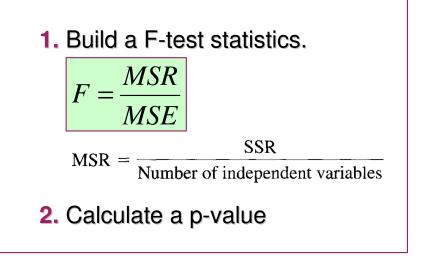
$$\beta_1 = b_1 \pm t_{\alpha/2}^{(n-2)} \frac{\sigma}{\sqrt{\sum (x_i - \overline{x})^2}}$$

Test for Significance

 H_0 : $β_1 = 0$ insignificant H_a : $β_1 ≠ 0$

1. Build a t-test statistics.

$$t = \frac{b_1}{\sigma_{b_1}} = \frac{b_1}{s} \sqrt{\sum (x_i - \bar{x})^2}$$

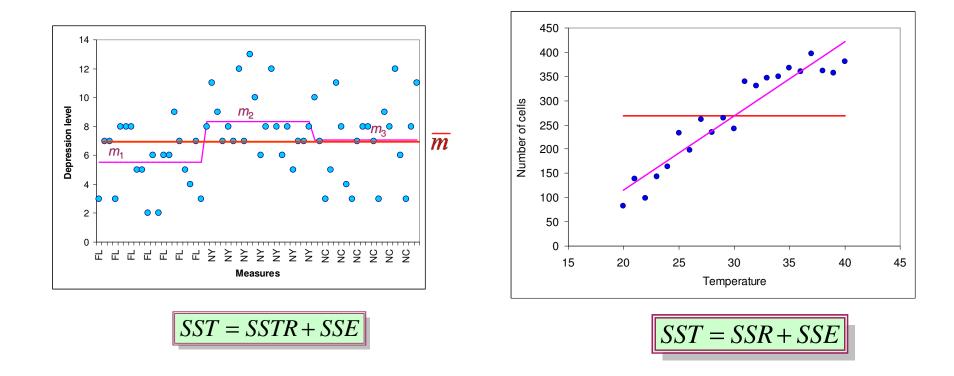


2. Calculate p-value for t

p-value approach:Reject H_0 if *p*-value $\leq \alpha$ Critical value approach:Reject H_0 if $t \leq -t_{a/2}$ or if $t \geq t_{a/2}$

where $t_{\alpha/2}$ is based on a t distribution with n-2 degrees of freedom.

ANOVA and Regression



In Excel use the function:

= INTERCEPT(y, x)

= SLOPE (y, x)

Example

2. Let's do it automatically Tools \rightarrow Data Analysis \rightarrow Regression

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.950842308			
R Square	0.904101095			
Adjusted R Square	0.899053784			
Standard Error	31.80180903			
Observations	21			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	181159.2853	181159.3	179.1253	4.01609E-11
Residual	19	19215.7461	1011.355		
Total	20	200375.0314			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-191.0081194	35.07510626	-5.445689	2.97E-05	-264.4211603	-117.5950784	-264.4211603	-117.5950784
X Variable 1	15.33857226	1.146057646	13.38377	4.02E-11	12.93984605	17.73729848	12.93984605	17.73729848

C	el	15	5.	x	ls	
_						

1. Calculate manually b_1 and b_0

Intercept	b0=	-191.008119
Slope	b1=	15.3385723

Confidence and Prediction

Confidence interval

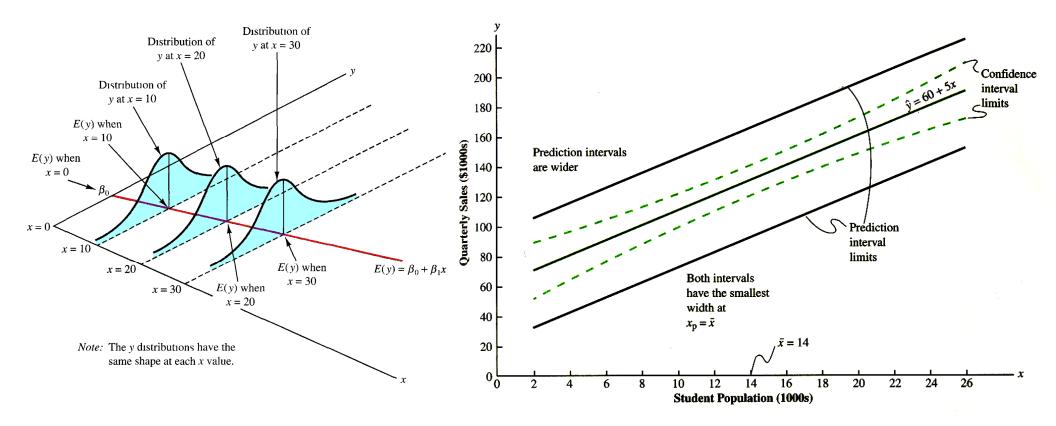
CENTRE DE RECHERCHE PUBLIC

C

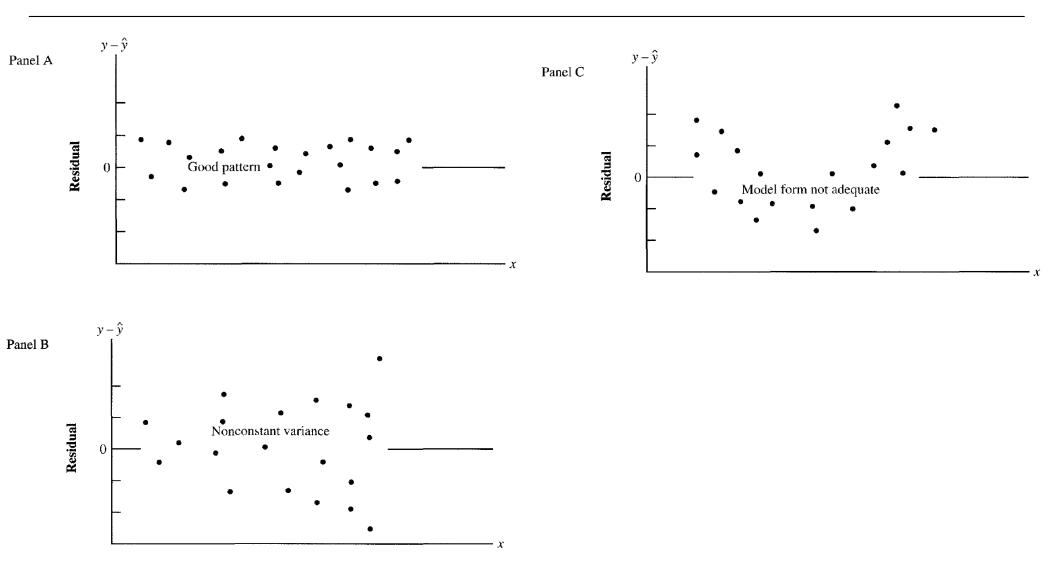
The interval estimate of the mean value of y for a given value of x.

Prediction interval

The interval estimate of an individual value of y for a given value of x.



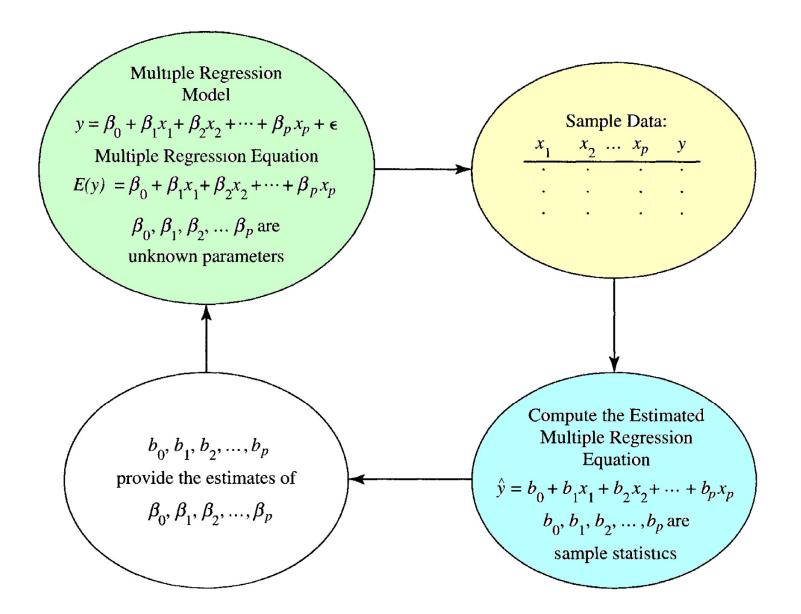
Residuals



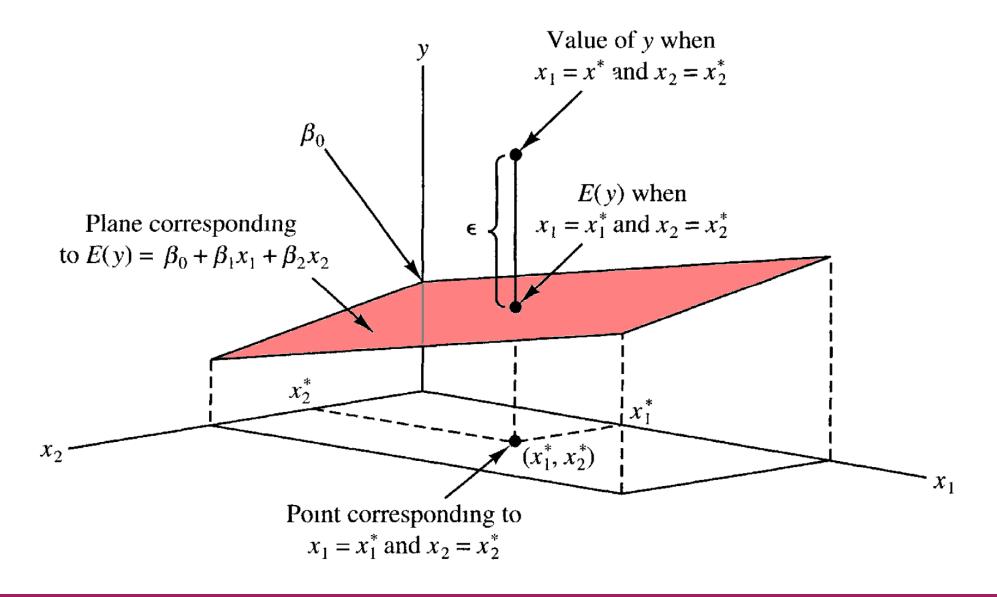
Cr

CENTRE DE RECHERCHE PUBLIC

Multiple Regression

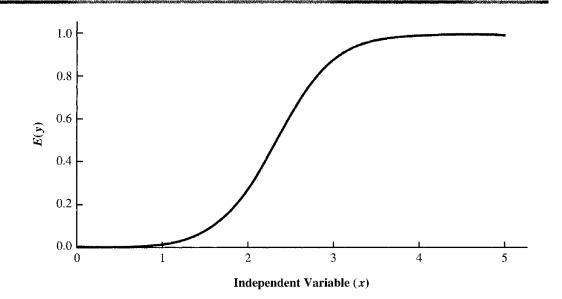


Multiple Regression



Non-Linear Regression

FIGURE 15.12 LOGISTIC REGRESSION EQUATION FOR $\beta_0 = -7$ AND $\beta_1 = 3$



$$E(y) = P(y = 1 | x_1, x_2, ..., x_p) = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p)}$$

Thank you for your attention

to be continued...