

Microarray Center

APPLIED STATISTICS

Lecture 9

Analysis of Variance (ANOVA)

Petr Nazarov petr.nazarov@crp-sante.lu

25-11-2009

OUTLINE

Lecture 9

Introduction to ANOVA

- why ANOVA
- shoe experiment
- assumptions with ANOVA

Single-factor ANOVA

- theory and application
- ANOVA table

Multi-factor ANOVA

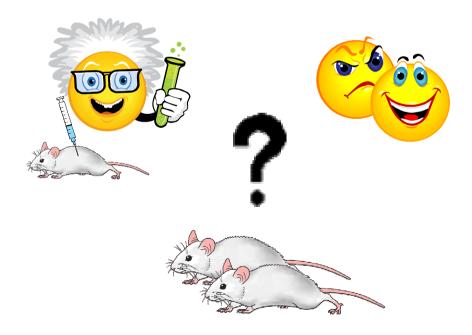
- theory and applications
- factor effects

Experimental design

- randomized design
- block design

Why ANOVA?

Means for more than 2 populations We have measurements for 5 conditions. Are the means for these conditions equal?

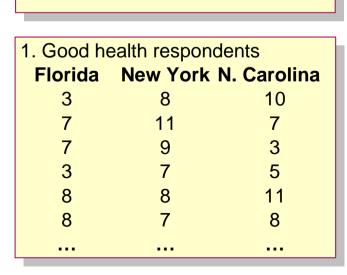

Validation of the effects

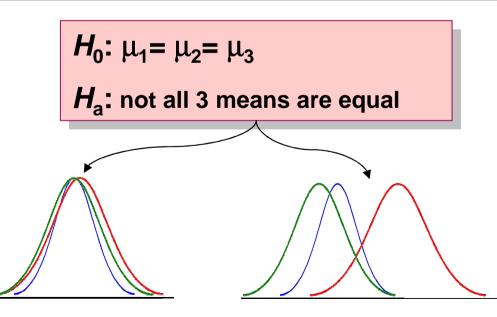
We assume that we have several factors affecting our data. Which factors are more significant? Which can be neglected?

If we would use pairwise comparisons, what will be the probability of getting error?

Number of comparisons: $C_2^5 = \frac{5!}{2!3!} = 10$

Probability of an error: $1-(0.95)^{10} = 0.4$

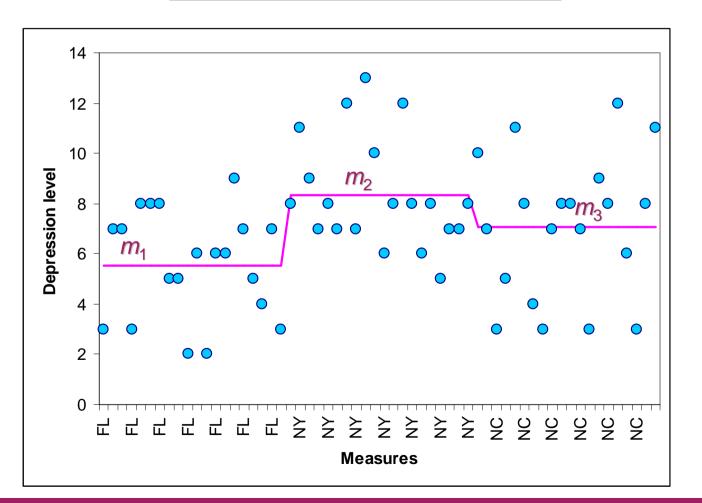

http://easylink.playstream.com/affymetrix/ambsymposium/partek_08.wvx


Example from Case Problem 3

As part of a long-term study of individuals 65 years of age or older, sociologists and physicians at the Wentworth Medical Center in upstate New York investigated the relationship between geographic location and depression. A sample of 60 individuals, all in reasonably good health, was selected; 20 individuals were residents of Florida, 20 were residents of New York, and 20 were residents of North Carolina. Each of the individuals sampled was given a standardized test to measure depression. The data collected follow; higher test scores indicate higher levels of depression.

Q: Is the depression level same in all 3 locations?

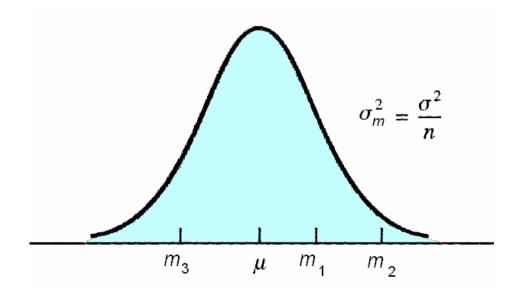
depression.xls



Meaning

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 H_a : not all 3 means are equal



Assumptions for ANOVA

Assumptions for Analysis of Variance

- 1. For each population, the response variable is normally distributed
- **2.** The variance of the respond variable, denoted as σ^2 is the same for all of the populations.
- 3. The observations must be independent.

Example from Case Problem 3

Parameter	Florida	New York	N. Carolina
m=	5.55	8.35	7.05
overall mean=	6.98333		
var=	4.5763	4.7658	8.0500

Let's estimate the variance of sampling distribution. If H_0 is true, then all m_i belong to the same distribution

12

$$\sigma_m^2 = \frac{\sigma^2}{n}$$

$$m_3 \quad \mu \quad m_1 \quad m_2$$

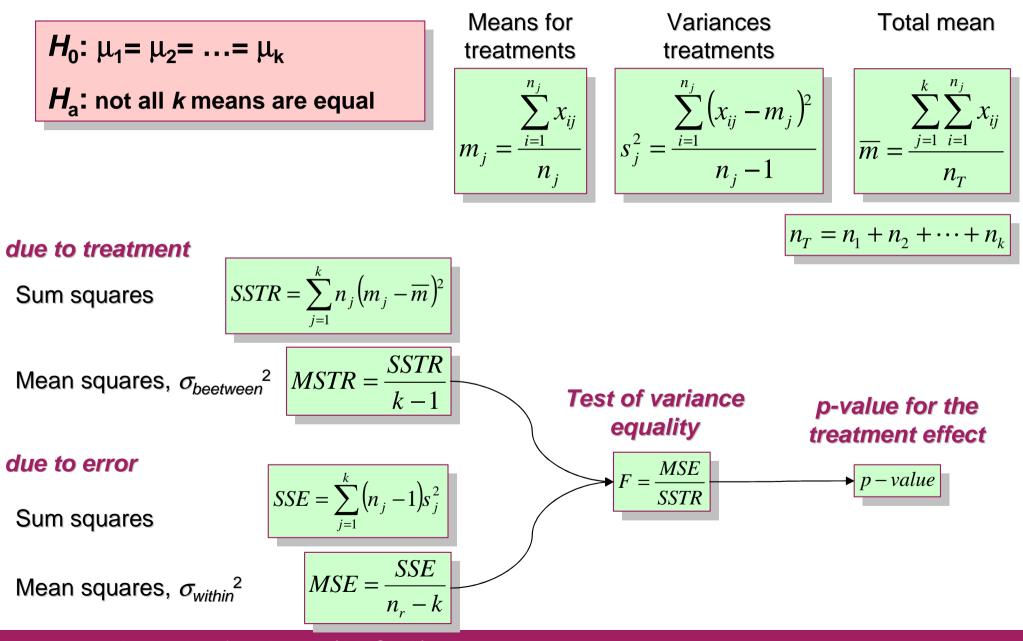
 H_0

$$\sigma_m^2 = \frac{\sum_{i=1}^k (m_i - \overline{m})^2}{k - 1} = \frac{(5.55 - 6.98)^2 + (8.35 - 6.98)^2 + (7.05 - 6.98)^2}{3 - 1} = 1.96$$

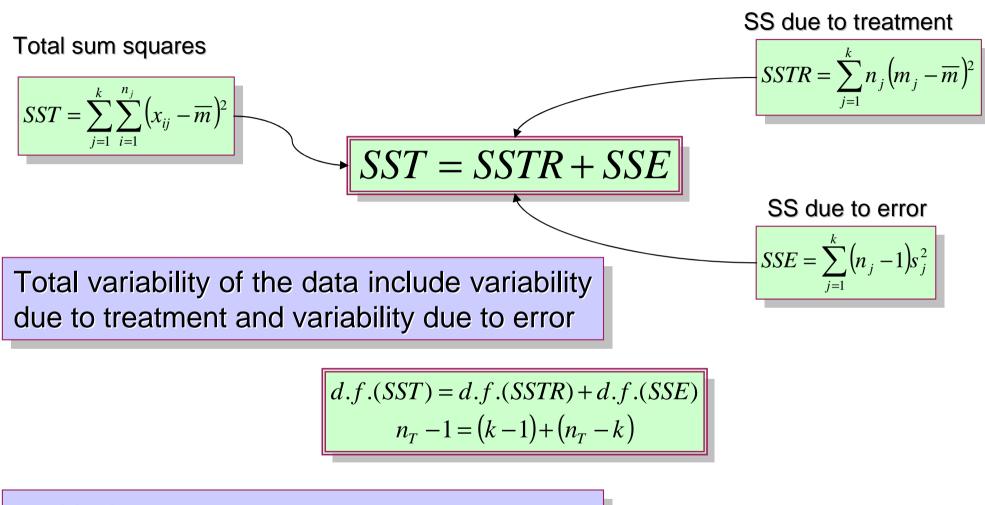
$$\sigma^2 = n\sigma_m^2 = 20 \times 1.96 = 39.27$$
 - this is called between-treatment estimate, works only at

At the same time, we can estimate the variance just by averaging out variances for each populations:

$$\sigma^2 = \frac{\sum_{i=1}^k \sigma_i}{k} = \frac{4.58 + 4.77 + 8.05}{3} = 5.8$$

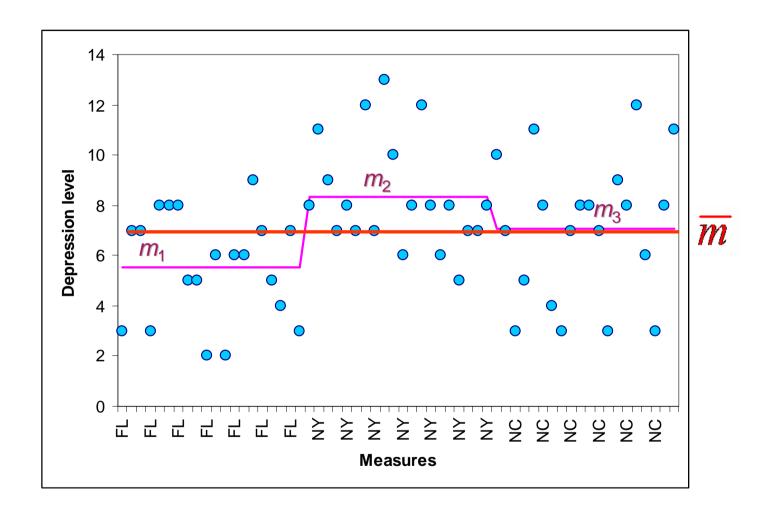

Lecture 9. Analysis of variance (ANOVA)

this is called within-treatment estimate


between-treatment estimate Does and within-treatment estimate give variances of the same "population"?

Theory

The Main Equation


Partitioning

¥ars

CENTRE DE RECHERCHE

The process of allocating the total sum of squares and degrees of freedom to the various components.

$$SST = SSTR + SSE$$

C

CENTRE DE RECHERCHE PUBLIC

Example

ANOVA table

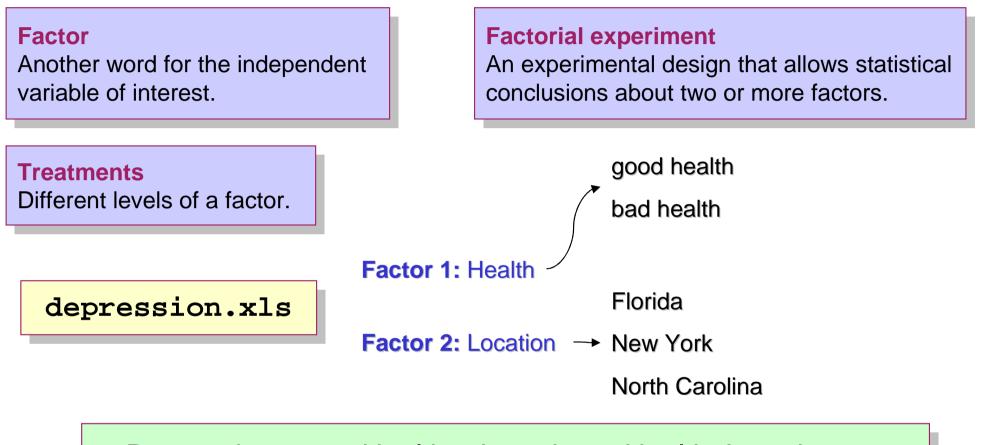
A table used to summarize the analysis of variance computations and results. It contains columns showing the source of variation, the sum of squares, the degrees of freedom, the mean square, and the F value(s).

In Excel use:

◆ Tools → Data Analysis → ANOVA Single Factor

SSTR

Let's perform for dataset 1: "good health"


ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	78.53333	2	39.26667	6.773188	0.002296	3.158843
Within Groups	330.45	57	5.797368			
Total	408.9833	59				
SSE						

depression.xls

Factors and Treatments

Depression = μ + Health + Location + Health×Location + ϵ

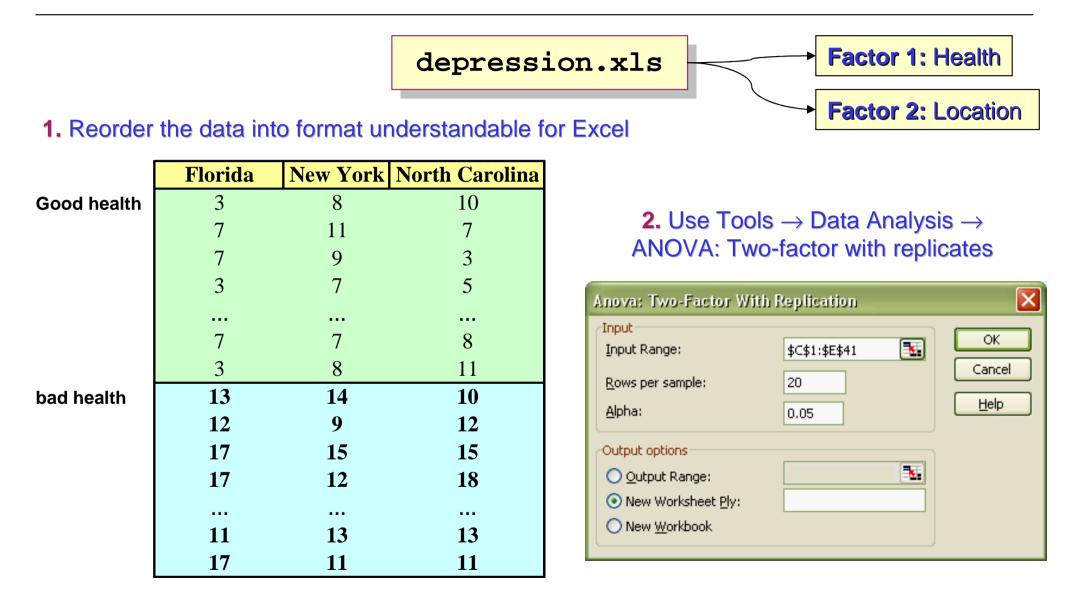
CENTRE DE RECHERCHE

The effect produced when the levels of one factor interact with the levels of another factor in influencing the response variable. ANOVA example from Partek[™]

2-factor ANOVA with *r* Replicates

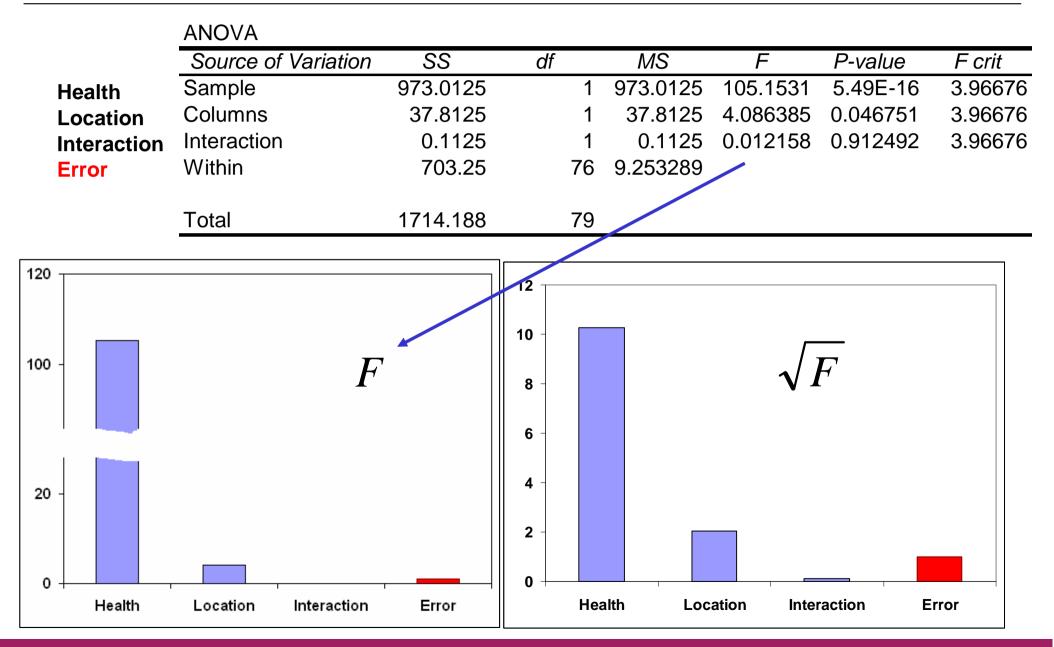
The number of times each experimental condition is repeated in an experiment	a = number of levels of factor A b = number of levels of factor B r = number of replications $n_r =$ total number of observations taken in the experiment; $n_T = abr$
Course Course Doors	Maan

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Factor A	SSA	<i>a</i> – 1	$MSA = \frac{SSA}{a-1}$	MSA MSE
Factor B	SSB	b - 1	$MSB = \frac{SSB}{b-1}$	MSB MSE
Interaction	SSAB	(a - 1)(b - 1)	$MSAB = \frac{SSAB}{(a-1)(b-1)}$	MSAB MSE
Error	SSE	ab(r-1)	$MSE = \frac{SSE}{ab(r-1)}$	
Total	SST	$n_{T} - 1$		


₹q10

CENTRE DE RECHERCHE PUBLIC

MULTI-FACTOR ANOVA


2-factor ANOVA with *r* Replicates: Example

MULTI-FACTOR ANOVA

2-factor ANOVA with *r* Replicates: Example

MULTI-FACTOR ANOVA

salar	ies.xls		Sex	Ocupation Financial Manage	Computer Program	mer Pharmacist
			Male	872	747	1105
Salary/week	Occupation	Gender		859	766	1144
872	Financial Manager	Male		1028	901	1085
859	Financial Manager	Male		1117	690	903
1028	Financial Manager	Male		1019	881	998
1117	Financial Manager	Male	Female	519	884	813
1019	Financial Manager	Male		702	765	985
519	Financial Manager	Female		805	685	1006
702	Financial Manager	Female		558	700	1034
805	Financial Manager	Female		591	671	817
558	Financial Manager	Female				
591	Financial Manager	Female				

Q: Which factors have significant effect on the salary

CENTRE DE RECHERCHE PUBLIC

Tools \rightarrow Data Analysis \rightarrow ANOVA: Two-factor with replicates

Source of Variation	SS	df	MS	F	P-value	F crit
Sample	36980	1	36980	4.0265	0.062	4.494
Columns	242000	1	242000	26.349	0.0001	4.494
Interaction	4500	1	4500	0.49	0.49399	4.494
Within	146948	16	9184.25			
Total	430428	19				

EXPERIMENTAL DESIGN

Experiments

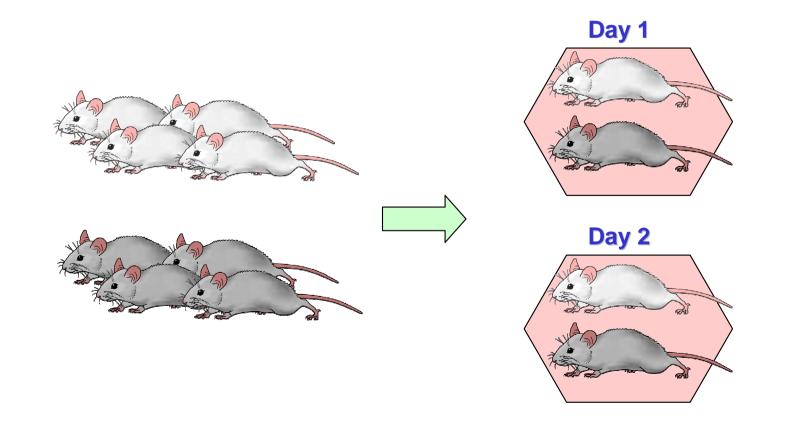
Completely randomized design

An experimental design in which the treatments are randomly assigned to the experimental units.

We can nicely randomize:

Day effect

Batch effect



Blocking

Cr

CENTRE DE RECHERCHE PUBL

The process of using the same or similar experimental units for all treatments. The purpose of blocking is to remove a source of variation from the error term and hence provide a more powerful test for a difference in population or treatment means.

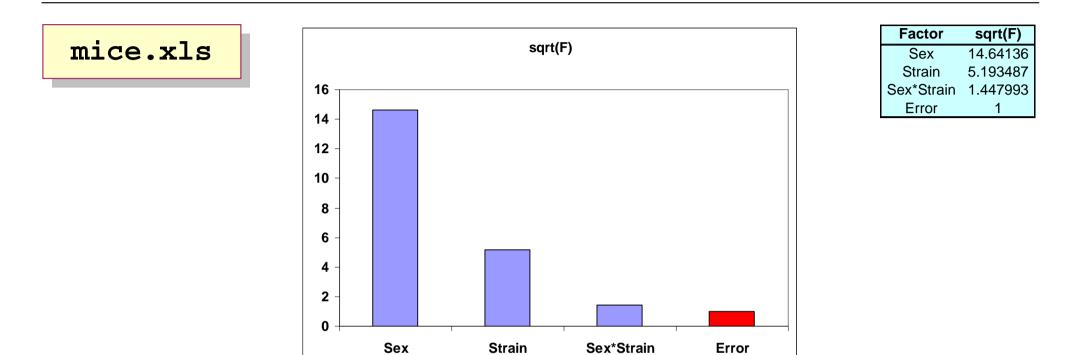
EXPERIMENTAL DESIGN

Experiments

A good suggestion... ©

Block what you can block, randomize what you cannot, and try to avoid unnecessary factors

ANOVA


Q: Does mouse strain affect the weight? Show the effects of sex and strain using ANOVA

	129S1/SvImJ A/J	Al	<r j<="" th=""><th>BALB/cByJE</th><th>BTBR_T+_BL</th><th>JB/BnJ (</th><th>C3H/HeJ</th></r>	BALB/cByJE	BTBR_T+_BL	JB/BnJ (C3H/HeJ
1 Female	20.5	23.2	24.6	22.8	28	27.1	21.4
2	20.8	22.4	26	23.5	25.8	24.1	28.2
3	19.8	22.7	31	23.8	26	25.9	23.5
4	21	21.4	25.7	22.7	26.5	25.9	23.9
5	21.9	22.6	23.7	19.7	26.3	26	22.8
6	22.1	20	21.1	26.2	27	27.1	18.4
7	21.3	21.8	23.7	24.1	26	26.2	21.8
8	20.1	20.8	24.5	23.5	28.8	27.5	25
9	18.9	19.5	32.3	23.8	28	30.2	20.1
10 Male	24.7	25.8	42.8	29.3	34.1	36.2	31.2
11	27.2	27.7	32.6	32.2	33	36.9	28.2
12	23.9	29.9	34.8	29.7	38.7	34.4	26.7
13	26.3	24.8	32.8	30	39	34.3	29.3
14	26	22.9	34.8	27	31	31.7	33.1
15	23.3	24.5	32.8	30	32	33	28.2
16	26.5	24.6	33.6	33.1	33.7	33.2	31.2
17	27.4	21.6	30.7	30.6	33.1	34	27.7
18	27.5	26.9	36.5	28.7	32.5	31	27.5

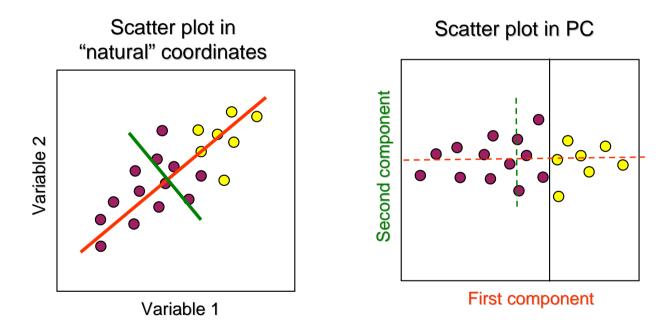
Optional Task

ANOVA

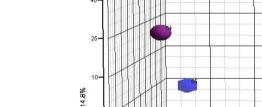
Source of Variation	SS	df	MS	F	P-value	F crit
Sample	1206.676	1	1206.676	214.3693	3.36E-26	3.940163
Columns	759.13	5	151.826	26.97231	6.06E-17	2.309202
Interaction	59.01074	5	11.80215	2.096684	0.072376	2.309202
Within	540.38	96	5.628958			
Total	2565.197	107				

Thank you for your attention

to be continued...



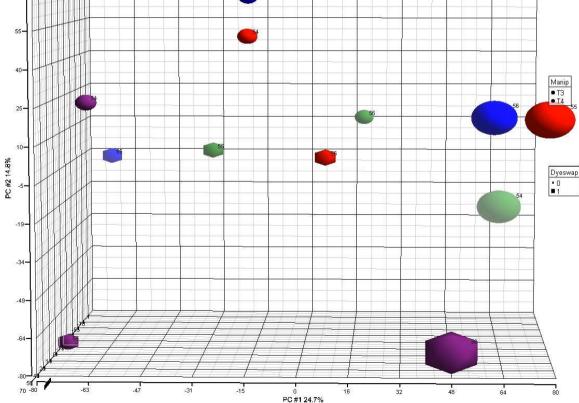
PRINCIPLE COMPONENT ANALYSIS


PCA Basics

Principal component analysis (PCA) is a vector space transform often used to reduce multidimensional data sets to lower dimensions for analysis. It selects the coordinates along which the variation of the data is bigger.

Example for 2D case: for the simplicity let us consider 2 parametric situation both in terms of data and resulting PCA.

Instead of using 2 "natural" parameters for the classification, we can use the first component!


 Transcriptomic profile of a sample contains thousands of genes, i.e. thousands of coordinates/parameters.

PCA is extremely useful for initial data analysis in transcriptomics, as it allows to depict thousands of parameters just in 2 or 3 dimension space.

> Substance AbF AhM AbO control

3 factors can influence the distribution of the variability: - Substance

- Manip (bio replicate)
- Dye swap

PCA Mapping (53.5%)

