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Lecture 11

11.1. Simple Linear Regression

Summary

In this lecture we showed how regression analyaishe used to determine how a dependent vanaibleelated to an
independent variabl&. In simple linear regression, the regression mode} £ £ + [ix + €. The simple linear
regression equatioB(y) = S + Bix describes how the mean or expected valugisfelated tox. We used sample data
and the least squares method to develop the estinmagression equation= by + byx. In effect, by and b, are the
sample statistics used to estimate the unknown hpadlemetergi, and5;.

The coefficient of determination was presented amemsure of the goodness of fit for the estimatgtassion
equation; it can be interpreted as the proportiathe variation in the dependent variaglthat can be explained by the
estimated regression equation. We reviewed coelats a descriptive measure of the strength ofeat relationship
between two variables.

The assumptions about the regression model ardsciated error termwere discussed, anidandF tests, based on
those assumptions, were presented as a means tEamdeng whether the relationship between two afalgs is

statistically significant. We showed how to use #stimated regression equation to develop confielémerval esti-

mates of the mean value ypand prediction interval estimates of individualued ofy.

The lecture concluded with the use of residual y@mislto validate the model assumptions and to iffeautliers and
influential observations.

Glossary
Dependent variableThe variable that is being predicted or explainei. denoted by.
Independent variableThe variable that is doing the predicting or expilag. It is denoted by.

Simple linear regressionRegression analysis involving one independent bbriand one dependent variable in which
the relationship between the variables is approtéchly a straight line.

Regression modelThe equation describing howis related tox and an error term; in simple linear regression, the
regression model ig= 5 + Bix + €.

Regression equationrhe equation that describes how the mean or exppectee of the dependent variable is related
to the independent variable; in simple linear regien,E(y) = 5 + /X

Estimated regression equatiorThe estimate of the regression equation develomad $ample data by using the least
squares method. For simple linear regression,stimated regression equatioryis by + byx.

Least squares methodA procedure used to develop the estimated regmessjoation. The objective is to minimize
>v-%)

Scatter diagram A graph of bivariate data in which the independeatiable is on the horizontal axis and the
dependent variable is on the vertical axis.

Coefficient of determination A measure of the goodness of fit of the estimategrassion equation. It can be
interpreted as the proportion of the variabilitytihe dependent variablethat is explained by the estimated regression
equation.

i-th residual The difference between the observed value of tpem#ent variable and the value predicted using the
estimated regression equation; for ittle observation théth residual isy, - ¥ .

Correlation coefficient A measure of the strength of the linear relatiomshéetween two variables (previously
discussed in Chapter 3).

Mean square error The unbiased estimate of the variance of the ¢eran . It is denoted by MSE o&.

Standard error of the estimateThe square root of the mean square error, denoted Ibis the estimate o8, the
standard deviation of the error teem

ANOVA table The analysis of variance table used to summarieecttimputations associated with tRetest for
significance.

Confidence interval The interval estimate of the mean valug &r a given value ok.
Prediction interval The interval estimate of an individual valueydbr a given value ox.

Residual analysisThe analysis of the residuals used to determinghgh¢he assumptions made about the regression
model appear to be valid. Residual analysis is assa to identify outliers and influential obseroas.
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Residual plot Graphical representation of the residuals thatlmamsed to determine whether the assumptions made
about the regression model appear to be valid.

Standardized residualThe value obtained by dividing a residual by itsstard deviation.

Normal probability plot A graph of the standardized residuals plottedreggaialues of the normal scores. This plot
helps determine whether the assumption that tlee 82rm has a normal probability distribution apsda be valid.

Outlier A data point or observation that does not fittilead shown by the remaining data.
Influential observation An observation that has a strong influence or éfdecthe regression results.
High leverage pointsObservations with extreme values for the independariables.

Key formulas
Simple Linear Regression Model

y=08,+[X+& (11.1)
Simple Linear Regression Equation
E(y)= 8+ Bx (11.2)
Estimated Simple Linear Regression Equation
B, + B.X (11.3)
Least Squares Criterion
. ~ \2
min"(y, - %) (11.4)
Slope and v-Intercept for the Estimated Regressmumation
_% -
= Z( )_(y y) (11.5)
(% - %)
b, =yY-bX (11.6)
Sum of Squares Due to Error
~\2
SSE=> (v, - ¥) (11.7)
Total Sum of Squares
—=\2
SsT=> (v, -y) (11.8)
Sum of Squares Due to Regression
A Y2
SSR=Y (9. -y) (11.9)
Relationship Among SST, SSR, and SSE
SST=SSR+ SSE (11.10)
Coefficient of Determination
SSR
r2="—"—" (11.11)
SSI

Sample Correlation Coefficient

r, = sign(b,)/Coefficier of determination= sign(b)Vr? (11.12)
Mean Square Error (Estimate af)

SSE

s’ = MSE="—"=" (11.13)
n-2
Standard Error of the Estimate
/ SSE
s=+MSE= —2 (11.14)
n —
Standard Deviation df;
g
O, =f———= (11.15)
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Estimated Standard Deviation lof

t Test Statisticqf =n — 2)

Mean Square Regression

F Test Statistic

Estimated Standard Deviation @fp

Confidence Interval foE( yp)

b
SDl

SSR

MSR=

Numberof independenvariables

F :@
MSE

Yo + ta/zsyp

Estimated Standard Deviation of an Individual Value

Prediction Interval foy,

Residual for Observation

Standard Deviation of theth Residual

Standardized Residual for Observation

Leverage of Observatidn

9p * ta/ZSnd

A

Y =¥
S, -5 =Sy1-h
Y~ ¥

i ~¥i
A
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11.2. Multiple Regression

Summary

In this lecture, we introduced multiple regressamalysis as an extension of simple linear regrassialysis presented
in Lecture 14. Multiple regression analysis enabie$o understand how a dependent variable issctlattwo or more
independent variables. The regression equdfigh = & + Bx + BX + ...+ BX, shows that the expected value or
mean value of the dependent variapis related to the values of the independent vaeg@hlx,, ..., X,. Sample data and
the least squares method are used to develop tiheated regression equatign= by + bix + b, + ... +bpx,. In effect

bo, b, by,..., h are sample statistics used to estimate the unknowdel parameterg, £, 5. .., 6. Computer
printouts were used throughout the chapter to esipbdhe fact that statistical software packagestza only realistic
means of performing the numerous computations requin multiple regression analysis.

The multiple coefficient of determination was prasel as a measure of the goodness of fit of thmatgd regression
equation. It determines the proportion of the wariaofy that can be explained by the estimated regressjoatieon.
The adjusted multiple coefficient of determinatiera similar measure of goodness of fit that adjérst the number of
independent variables and thus avoids overestig#tie impact of adding more independent variables.

An F test and d test were presented as ways to determine statigtighether the relationship among the variables is
significant. TheF test is used to determine whether there is a sigmif overall relationship between the dependent
variable and the set of all independent variablgse t test is used to determine whether there is a sogmif
relationship between the dependent variable andndividual independent variable given the othereipendent
variables in the regression model. Correlation agntire independent variables, known as multicollilgawas
discussed.

The section on qualitative independent variablesvgld how dummy variables can be used to incorpayasditative

data into multiple regression analysis. The sectinrresidual analysis showed how residual analysis be used to
validate the model assumptions, detect outlierd,idantify influential observations. Standardizediduals, leverage,
studentized deleted residuals, and Cook's distarezsure were discussed. The chapter concludedansdction on
how logistic regression can be used to model sitngtin which the dependent variable may only agstmo values.

Glossary
Multiple regression analysisRegression analysis involving two or more indepahdariables.

Multiple regression model The mathematical equation that describes how tiperdéent variable is related to the
independent variables, x,. . .,X, and an error terra.

Multiple regression equationThe mathematical equation relating the expectedeval mean value of the dependent
variable to the values of the independent varialthes isE(y) = & + GX + BoXe + ...+ BoXp

Estimated multiple regression equationThe estimate of the multiple regression equaticsetleon sample data and
the least squares method; itfis by + byx; + box, + . . . +bpX,.

Least squares methodrhe method used to develop the estimated regressjoation. It minimizes the sum of squared
residuals (the deviations between the observedesatd the dependent variablg,and the estimated values of the

VIII. 4



Lecture 11

dependent variablej ).

Multiple coefficient of determination A measure of the goodness of fit of the estimatedtipbe regression equation.
It can be interpreted as the proportion of theakdlity in the dependent variable that is explaitgdthe estimated
regression equation.

Adjusted multiple coefficient of determination A measure of the goodness of fit of the estimateitipte regression
equation that adjusts for the number of independanéables in the model and thus avoids overestilgahe impact of
adding more independent variables.

Multicollinearity The term used to describe the correlation amongnttependent variables.
Qualitative independent variableAn independent variable with qualitative data.

Dummy variable A variable used to model the effect of qualitativéependent variables. A dummy variable may take
only the value zero or one.

LeverageA measure of how far the values of the independanables are from their mean values.
Outlier An observation that does not fit the pattern ofdtieer data.

Studentized deleted residualsStandardized residuals that are based on a regsadiard error of the estimate
obtained by deleting observatiofrom the data set and then performing the regrasmnalysis and computations.

Influential observation An observation that has a strong influence on éigeassion results.

Cook's distance measuré measure of the influence of an observation baseboth the leverage of observaticsnd
the residual for observatian

Logistic regression equationThe mathematical equation relatikfy), the probability thaty = 1, to the values of the

independent variables; that is(y) = P(y = 1] x, x,....x, )= explf, + B+ BoXo + ...+ BoX,)
P 1+eX|c(,B’0 + X+ BoX +. ,Bpxp)
Estimated logistic regression equatiorfhe estimate of the logistic regression equaticsetlaon sample data; that is
§=estimate ofp(y 1%, %1 X ): xS, + B + ByX, ..+ B,X, )
U LrextdB + Bx B ot By,

Odds in favor of an event occurringThe probability the event will occur divided by theobability the event will not
occur.

Odds ratio The odds thay = 1 given that one of the independent variables as®d by one unit (odddivided by the
odds thay = 1 given no change in the values for the independamidbles (odd3; that is, Odds ratio = oddedds.

Logit The natural logarithm of the odds in favoryof 1; that is,g(Xi.Xz,....X0) = Go + BX + BoXo + ...+ BXp
Estimated logit An estimate of the logit based on sample data;ishgt (X1, %, ..., %) = o + BX + BoXo + ...+ BXp

Key formulas
Multiple Regression Model

V=Bt BXt Bt BX, tE (11.28)
Multiple Regression Equation
E(Y) =5+ BX + L%+ + BX, (11.29)
Estimated Multiple Regression Equation
y=by+hx +hX, +--+byX, (11.30)
Least Squares Criterion
. ~ \2
min> (y, - 9) (11.31)
Relationship Among SST, SSR. and SSE
SST=SSR+ SSE (11.32)
Multiple Coefficient of Determination
SSR
RP=—"" (11.33)
SSI
Adjusted Multiple Coefficient of Determination
2 2 n _1
=1-U-R}— (11.34)
R=1-(-R)}- 2
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Mean Square Regression
SSR

MSR=—— (11.35)
p
Mean Square Error
MSE= iEl (11.36)
n-p-
F Test Statistic
_ MSR
= M—SE (11.19)
t Test Statistic
t= & (12.17)
S,
Standardized Residual for Observation
i~ ¥ (11.26)
Syi _yl
Standard Deviation of Residual
Syi—ifi =s,/1- h (11.25)
Cook's Distance Measure
~ \2
_(y-9)| h
Di = (p—1)82 [(1—h)2} (11.37)

Logistic Regression Equation

SBo+ X+ BoXo e+ BpXp

e

E(y) = L4 o B, (11.38)
Estimated Logistic Regression Equation
Do +0; Xy +0, %5 ++--+bp X,
y = estimateof P(y =1 %, %,..., xp) = L5 i, (11.39)
Odds Ratio
. _odd
Oddsraio = odds (11.40)
odds
Logit
90, Xoree Xy )= Bo + Buxe + BoXy + oo+ BoX, (11.41)
Estimated Logit
G, X000 X, ) = by + X + By, + o+ BX (11.42)

11.3. Regression Analysis: Model Building

Summary

In this chapter we discussed several concepts hgeshodel builders in identifying the best estimategression
equation. First, we introduced the concept of segarlinear model to show how the methods discussé&hapters 14
and 15 could be extended to handle curvilineartiorlahips and interaction effects. Then we disadiskew

transformations involving the dependent variableldde used to account for problems such as noteaingariance in
the error term.

In many applications of regression analysis, adargmber of independent variables are considerez pisented a
general approach based onFastatistic for adding or deleting variables fromegnession model. We then introduced a
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larger problem involving 25 observations and eigittependent variables. We saw that one issue eta@ghin
solving larger problems is finding the best subsethe independent variables. To help in that tass,discussed
several variable selection procedures: stepwiseesspn, forward selection, backward eliminationd dest-subsets
regression.

We extended the applications of residual analysishow the Durbin-Watson test for autocorrelatibhe chapter
concluded with a discussion of how multiple regi@sanodels could be developed to provide anoth@ragrh for
solving analysis of variance and experimental depigblems.

Glossary
General linear model A model of the formy = & + fiz + Bz + ... + Bz, + & where each of the independent
variablesz(j = 1,2,...,p) are functions ok.,%, . . . %, the variables for which data have been collected.

Interaction The effect of two independent variables acting toge

Variable selection proceduresdviethods for selecting a subset of the independariables for a regression model.
Autocorrelation Correlation in the errors that arises when therdmons at successive points in time are related.
Serial correlation Same as autocorrelation.

Durbin-Watson test A test to determine whether first-order autocotietais present.

Key formulas
General Linear Model

Y=6+Bz+Bz+-+[,Z,+€ (11.43)
F Test Statistic for Adding or Deleting— gqVariables
SSE(xl,xz,...,xq)—SSE(xl,xz,...,xq,xq+l,...,xp)
- P—q
F= £ \ (11.44)
SSHX,, Xy, Xgs Xgagr- 1 %p)
n-p-1

First-Order Autocorrelation
£ =PELTT (11.45)
Durbin-Watson Test Statistic
n
> (e-8.)
d=4i=2__ - (11.46)
28

i=1
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FIGURE 16.1 SCATTER DIAGRAM FOR THE REYNOLDS EXAMPLE
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