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Lecture 11 

11.1. Simple Linear Regression 

Summary 
In this lecture we showed how regression analysis can be used to determine how a dependent variable y is related to an 
independent variable x. In simple linear regression, the regression model is y = β0 + β1x + ε. The simple linear 
regression equation E(y) = β0 + β1x describes how the mean or expected value of y is related to x. We used sample data 
and the least squares method to develop the estimated regression equation y = b0 + b1x. In effect, b0 and b1 are the 
sample statistics used to estimate the unknown model parameters β0 and β1. 

The coefficient of determination was presented as a measure of the goodness of fit for the estimated regression 
equation; it can be interpreted as the proportion of the variation in the dependent variable y that can be explained by the 
estimated regression equation. We reviewed correlation as a descriptive measure of the strength of a linear relationship 
between two variables. 

The assumptions about the regression model and its associated error term ε were discussed, and t and F tests, based on 
those assumptions, were presented as a means for determining whether the relationship between two variables is 
statistically significant. We showed how to use the estimated regression equation to develop confidence interval esti-
mates of the mean value of y and prediction interval estimates of individual values of y. 

The lecture concluded with the use of residual analysis to validate the model assumptions and to identify outliers and 
influential observations. 

Glossary 
Dependent variable The variable that is being predicted or explained. It is denoted by y.  

Independent variable The variable that is doing the predicting or explaining. It is denoted by x. 

Simple linear regression Regression analysis involving one independent variable and one dependent variable in which 
the relationship between the variables is approximated by a straight line. 

Regression model The equation describing how y is related to x and an error term; in simple linear regression, the 
regression model is y = β0 + β1x + ε. 

Regression equation The equation that describes how the mean or expected value of the dependent variable is related 
to the independent variable; in simple linear regression, E(y) = β0 + β1x 

Estimated regression equation The estimate of the regression equation developed from sample data by using the least 
squares method. For simple linear regression, the estimated regression equation is y = b0 + b1x. 

Least squares method A procedure used to develop the estimated regression equation. The objective is to minimize 
( )∑ − 2ˆii yy  

Scatter diagram A graph of bivariate data in which the independent variable is on the horizontal axis and the 
dependent variable is on the vertical axis. 

Coefficient of determination A measure of the goodness of fit of the estimated regression equation. It can be 
interpreted as the proportion of the variability in the dependent variable y that is explained by the estimated regression 
equation. 

i-th residual The difference between the observed value of the dependent variable and the value predicted using the 
estimated regression equation; for the i-th observation the i-th residual is ii yy ˆ− . 

Correlation coefficient A measure of the strength of the linear relationship between two variables (previously 
discussed in Chapter 3). 

Mean square error The unbiased estimate of the variance of the error term σ2. It is denoted by MSE or s2. 

Standard error of the estimate The square root of the mean square error, denoted by s. It is the estimate of σ, the 
standard deviation of the error term ε. 

ANOVA table The analysis of variance table used to summarize the computations associated with the F test for 
significance. 

Confidence interval The interval estimate of the mean value of y for a given value of x.  

Prediction interval The interval estimate of an individual value of y for a given value of x. 

Residual analysis The analysis of the residuals used to determine whether the assumptions made about the regression 
model appear to be valid. Residual analysis is also used to identify outliers and influential observations. 
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Residual plot Graphical representation of the residuals that can be used to determine whether the assumptions made 
about the regression model appear to be valid. 

Standardized residual The value obtained by dividing a residual by its standard deviation. 

Normal probability plot  A graph of the standardized residuals plotted against values of the normal scores. This plot 
helps determine whether the assumption that the error term has a normal probability distribution appears to be valid. 

Outlier  A data point or observation that does not fit the trend shown by the remaining data. 

Influential observation An observation that has a strong influence or effect on the regression results. 

High leverage points Observations with extreme values for the independent variables. 

Key formulas 
Simple Linear Regression Model 

εββ ++= xy 10       (11.1) 

Simple Linear Regression Equation 

( ) xyE 10 ββ +=      (11.2) 

Estimated Simple Linear Regression Equation 

xy 10 ββ +=      (11.3) 

Least Squares Criterion 

( )∑ − 2ˆmin ii yy       (11.4) 

Slope and v-Intercept for the Estimated Regression Equation 
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Sum of Squares Due to Error 

( )∑ −= 2ˆii yySSE       (11.7) 

Total Sum of Squares 

( )∑ −= 2yySST i      (11.8) 

Sum of Squares Due to Regression 

( )∑ −= 2ˆ yySSR i      (11.9) 

Relationship Among SST, SSR, and SSE 

SSESSRSST +=      (11.10) 
Coefficient of Determination 
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Sample Correlation Coefficient 
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Mean Square Error (Estimate of σ 2) 
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Estimated Standard Deviation of b1 
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t Test Statistic (df = n – 2) 
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Mean Square Regression 
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F Test Statistic 
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Confidence Interval for E( yp) 
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Estimated Standard Deviation of an Individual Value 
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Prediction Interval for yp 
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Residual for Observation i 
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Standard Deviation of the i-th Residual 
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Standardized Residual for Observation i 
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Leverage of Observation i 
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11.2. Multiple Regression 

Summary 
In this lecture, we introduced multiple regression analysis as an extension of simple linear regression analysis presented 
in Lecture 14. Multiple regression analysis enables us to understand how a dependent variable is related to two or more 
independent variables. The regression equation E(y) = β0 + βlxl + β2x2 + …+ βpxp shows that the expected value or 
mean value of the dependent variable y is related to the values of the independent variables x1 x2, ..., xp. Sample data and 
the least squares method are used to develop the estimated regression equation y = b0 + blxl + b2x2 + ... + bpxp. In effect 
b0, bl, b2,..., bp are sample statistics used to estimate the unknown model parameters β0, β1, β2,. .., βp. Computer 
printouts were used throughout the chapter to emphasize the fact that statistical software packages are the only realistic 
means of performing the numerous computations required in multiple regression analysis. 

The multiple coefficient of determination was presented as a measure of the goodness of fit of the estimated regression 
equation. It determines the proportion of the variation of y that can be explained by the estimated regression equation. 
The adjusted multiple coefficient of determination is a similar measure of goodness of fit that adjusts for the number of 
independent variables and thus avoids overestimating the impact of adding more independent variables. 

An F test and a t test were presented as ways to determine statistically whether the relationship among the variables is 
significant. The F test is used to determine whether there is a significant overall relationship between the dependent 
variable and the set of all independent variables. The t test is used to determine whether there is a significant 
relationship between the dependent variable and an individual independent variable given the other independent 
variables in the regression model. Correlation among the independent variables, known as multicollinearity, was 
discussed. 

The section on qualitative independent variables showed how dummy variables can be used to incorporate qualitative 
data into multiple regression analysis. The section on residual analysis showed how residual analysis can be used to 
validate the model assumptions, detect outliers, and identify influential observations. Standardized residuals, leverage, 
studentized deleted residuals, and Cook's distance measure were discussed. The chapter concluded with a section on 
how logistic regression can be used to model situations in which the dependent variable may only assume two values. 

Glossary 
Multiple regression analysis Regression analysis involving two or more independent variables. 

Multiple regression model The mathematical equation that describes how the dependent variable y is related to the 
independent variables xl, x2,. . ., xp and an error term ε. 

Multiple regression equation The mathematical equation relating the expected value or mean value of the dependent 
variable to the values of the independent variables; that is E(y) = β0 + βlxl + β2x2 + …+ βpxp 

Estimated multiple regression equation The estimate of the multiple regression equation based on sample data and 
the least squares method; it is ŷ = b0 + b1x1 + b2x2 + . . . + bpxp. 

Least squares method The method used to develop the estimated regression equation. It minimizes the sum of squared 
residuals (the deviations between the observed values of the dependent variable, yi and the estimated values of the 
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dependent variable, 
iŷ ). 

Multiple coefficient of determination A measure of the goodness of fit of the estimated multiple regression equation. 
It can be interpreted as the proportion of the variability in the dependent variable that is explained by the estimated 
regression equation. 

Adjusted multiple coefficient of determination A measure of the goodness of fit of the estimated multiple regression 
equation that adjusts for the number of independent variables in the model and thus avoids overestimating the impact of 
adding more independent variables. 

Multicollinearity The term used to describe the correlation among the independent variables. 

Qualitative independent variable An independent variable with qualitative data. 

Dummy variable A variable used to model the effect of qualitative independent variables. A dummy variable may take 
only the value zero or one. 

Leverage A measure of how far the values of the independent variables are from their mean values. 

Outlier An observation that does not fit the pattern of the other data. 

Studentized deleted residuals Standardized residuals that are based on a revised standard error of the estimate 
obtained by deleting observation i from the data set and then performing the regression analysis and computations. 

Influential observation An observation that has a strong influence on the regression results. 

Cook's distance measure A measure of the influence of an observation based on both the leverage of observation i and 
the residual for observation i. 

Logistic regression equation The mathematical equation relating E(y), the probability that y = 1, to the values of the 

independent variables; that is, ( ) ( )
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Estimated logistic regression equation The estimate of the logistic regression equation based on sample data; that is 
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Odds in favor of an event occurring The probability the event will occur divided by the probability the event will not 
occur. 

Odds ratio The odds that y = 1 given that one of the independent variables increased by one unit (odd1) divided by the 
odds that y = 1 given no change in the values for the independent variables (odds0); that is, Odds ratio = odds1/odds2. 

Logit The natural logarithm of the odds in favor of y = 1; that is, g(x1,x2,…,xp) = β0 + βlxl + β2x2 + …+ βpxp 

Estimated logit An estimate of the logit based on sample data; that is, g^ (x1,x2,…,xp) = β0 + βlxl + β2x2 + …+ βpxp  

Key formulas 
Multiple Regression Model 

εββββ +++++= ppxxxy L22110     (11.28) 

Multiple Regression Equation 

ppxxxyE ββββ ++++= L22110)(    (11.29) 

Estimated Multiple Regression Equation 

ppxbxbxbby ++++= L22110ˆ    (11.30) 

Least Squares Criterion 

( )∑ − 2ˆmin ii yy       (11.31) 

Relationship Among SST, SSR. and SSE 

SSESSRSST +=      (11.32) 

Multiple Coefficient of Determination 
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Adjusted Multiple Coefficient of Determination 
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Mean Square Regression 
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Mean Square Error 

1−−
=

pn

SSE
MSE      (11.36) 

F Test Statistic 
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t Test Statistic 
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Standardized Residual for Observation i 
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Standard Deviation of Residual i 
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Cook's Distance Measure 
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Logistic Regression Equation 
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Estimated Logistic Regression Equation 
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Odds Ratio 
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Logit 

( ) ppp xxxxxxg ββββ ++++= LK 2211021 ,,,    (11.41) 

Estimated Logit 
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11.3. Regression Analysis: Model Building 

Summary 
In this chapter we discussed several concepts used by model builders in identifying the best estimated regression 
equation. First, we introduced the concept of a general linear model to show how the methods discussed in Chapters 14 
and 15 could be extended to handle curvilinear relationships and interaction effects. Then we discussed how 
transformations involving the dependent variable could be used to account for problems such as nonconstant variance in 
the error term. 

In many applications of regression analysis, a large number of independent variables are considered. We presented a 
general approach based on an F statistic for adding or deleting variables from a regression model. We then introduced a 
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larger problem involving 25 observations and eight independent variables. We saw that one issue encountered in 
solving larger problems is finding the best subset of the independent variables. To help in that task, we discussed 
several variable selection procedures: stepwise regression, forward selection, backward elimination, and best-subsets 
regression. 

We extended the applications of residual analysis to show the Durbin-Watson test for autocorrelation. The chapter 
concluded with a discussion of how multiple regression models could be developed to provide another approach for 
solving analysis of variance and experimental design problems. 

Glossary 
General linear model A model of the form y = β0 + β1z1 + β2z2 + … + βpzp + ε, where each of the independent 
variables zj(j = 1,2,..., p) are functions of x1,x2, . . . ,xk, the variables for which data have been collected. 

Interaction The effect of two independent variables acting together. 

Variable selection procedures Methods for selecting a subset of the independent variables for a regression model. 

Autocorrelation Correlation in the errors that arises when the error terms at successive points in time are related. 

Serial correlation Same as autocorrelation. 

Durbin-Watson test A test to determine whether first-order autocorrelation is present. 

 

Key formulas 
General Linear Model 

εββββ +++++= ppzzzy L22110     (11.43) 

F Test Statistic for Adding or Deleting p – q Variables 
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First-Order Autocorrelation 
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Durbin-Watson Test Statistic 
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