

STATISTICAL DATA ANALYSIS IN EXCEL

Lecture 3

Testing of Hypotheses for Means

dr. Petr Nazarov

petr.nazarov@crp-sante.lu

31-10-2011

Statistical data analysis in Excel.

3. Testing hypotheses for means

Hypotheses for means

- Unpaired t-test
- Paired t-test

http://edu.sablab.net/data

Hypotheses for Mean

Statistical data analysis in Excel. 3. Testing hypotheses for means

Null and Alternative Hypotheses

Here we continue the discussion of statistical inference by showing how hypothesis testing can be used to determine whether a statement about the value of a population parameter should or should not be rejected.

In hypothesis testing we begin by making a tentative assumption about a population parameter, i.e. by formulation of a null hypothesis.

Null hypothesis The hypothesis tentatively assumed true in the hypothesis testing procedure, H_0

Alternative hypothesis The hypothesis concluded to be true if the null hypothesis is rejected, H_a

H_0 : $\mu \leq \text{const}$	H_0 : $\mu \ge \text{const}$	$H_0: \mu = \text{const}$
H_{a} : μ > const	H _a : μ < const	H _a : μ ≠ const
$H_0: \mu_1 \leq \mu_2$	$H_0: \mu_1 \ge \mu_2$	$H_0: \mu_1 = \mu_2$
$H_{a}: \mu_{1} > \mu_{2}$	$H_{a}: \mu_{1} < \mu_{2}$	$H_a: \mu_1 \neq \mu_2$

Type I Error

Type I error The error of rejectin	g H_0 when it is tru	e. Type I The er		H_0 when it is false.
Level of significan The probability of m the null hypothesis i	aking a Type I err			poor sensitivity False Negative,
Population Condition			β error	
		H ₀ True	H _a True	
Conclusion	Accept H ₀	Correct Conclusion	Type II Error	
	Reject H ₀	Type I Error	Correct Conclusion	
	Fal	se Positive,		
		α error		
	po	oor specificity		
itistical data analysi	s in Excel. 3	3. Testing hypothe	ses for means	

One-tailed Test

One-tailed test

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in one tail of its sampling distribution

A Trade Commission (TC) periodically conducts statistical studies designed to test the claims that manufacturers make about their products. For example, the label on a large can of Hilltop Coffee states that the can contains 3 pounds of coffee. The TC knows that Hilltop's production process cannot place exactly 3 pounds of coffee in each can, even if the mean filling weight for the population of all cans filled is 3 pounds per can. However, as long as the population mean filling weight is at least 3 pounds per can, the rights of consumers will be protected. Thus, the TC interprets the label information on a large can of coffee as a claim by Hilltop that the population mean filling weight is at least 3 pounds per can. We will show how the TC can check Hilltop's claim by conducting a lower tail hypothesis test.

 μ_0 = 3 lbm Suppose sample of n=36 coffee cans is selected. From the previous studies it's known that σ = 0.18 lbm

HYPOTHESIS TESTING FOR THE MEAN

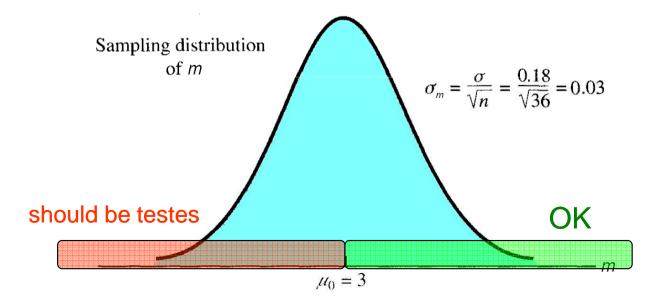
One-tailed Test: Example

 $\mu_0 = 3 \text{ lbm}$

Suppose sample of n = 36 coffee cans is selected and m = 2.92 is observed. From the previous studies it's known that $\sigma = 0.18$ lbm

 $H_0: \mu \ge 3$ no action $H_a: \mu < 3$ legal action

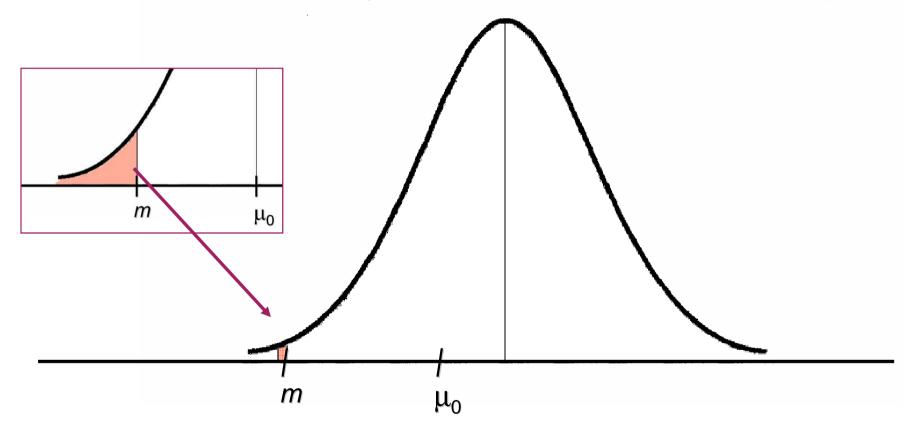
Let's say: in the extreme case, when μ =3, we would like to be 99% sure that we make no mistake, when starting legal actions against Hilltop Coffee. It means that selected significance level is $\alpha = 0.01$



HYPOTHESIS TESTING FOR THE MEAN

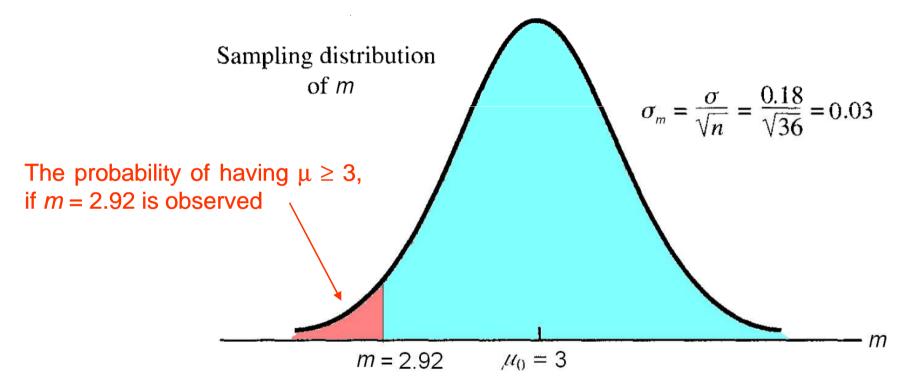
Let's Try to Understand...

Let's find the probability of observation *m* for all possible $\mu \ge 3$. We start from an extreme case (μ =3) and then probe all possible $\mu > 3$. See the behavior of the small probability area around measured *m*. What you will get if you summarize its area for all possible $\mu \ge 3$?



P(m) for all possible $\mu \ge \mu_0$ is equal to $P(\overline{x} < m)$ for an extreme case of $\mu = \mu_0$

Let's Try to Understand...



In other words, red area characterizes the probability of the null hypothesis.

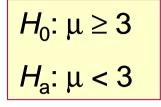
To be completely correct, the **red area** gives us a **probability of making an error** when rejecting the null hypothesis, or the **p-value**.

$\sigma \text{ is Unknown}$

if σ in unknown:
$\sigma ightarrow s$
$z \rightarrow t$

	Lower Tail Test	Upper Tail Test	Two-Tailed Test
Hypotheses	$H_0: \mu \ge \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu = \mu_0$
	$H_a: \mu < \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu \neq \mu_0$
Test Statistic	$t = \frac{m - \mu_0}{s / \sqrt{n}}$	$t = \frac{m - \mu_0}{s / \sqrt{n}}$	$t = \frac{m - \mu_0}{s / \sqrt{n}}$
Rejection Rule:	Reject H ₀ if	Reject H ₀ if	Reject H ₀ if
p-Value Approach	p-value $\leq \alpha$	p-value $\leq \alpha$	p-value $\leq \alpha$
Rejection Rule:	Reject H ₀ if	Reject H ₀ if	Reject H ₀ if
Critical Value Approach	$t \leq -t_{\alpha}$	$t \ge t_{\alpha}$	$t \le -t_{\alpha/2}$ or if $t \ge t_{\alpha/2}$

One-tailed Test



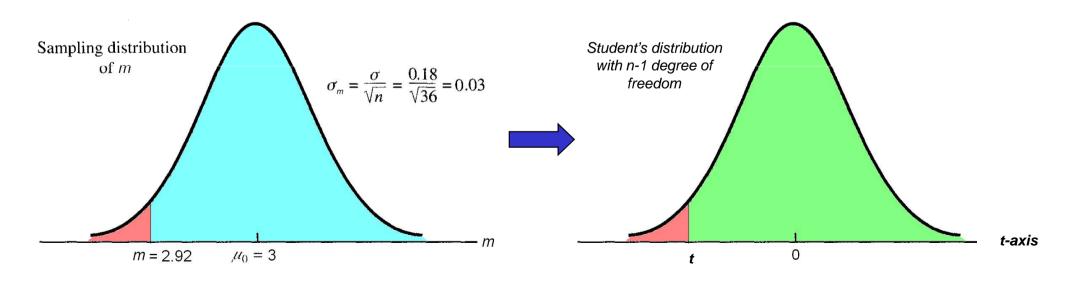
Assume that we have obtained experimentally m=2.92. Is it significant?

Step 1. Introduce the test statistics

Test statistic

A statistic whose value helps determine whether a null hypothesis can be rejected

$$t = \frac{m - \mu_0}{s / \sqrt{n}} = \frac{m - \mu_0}{s} \sqrt{n}$$

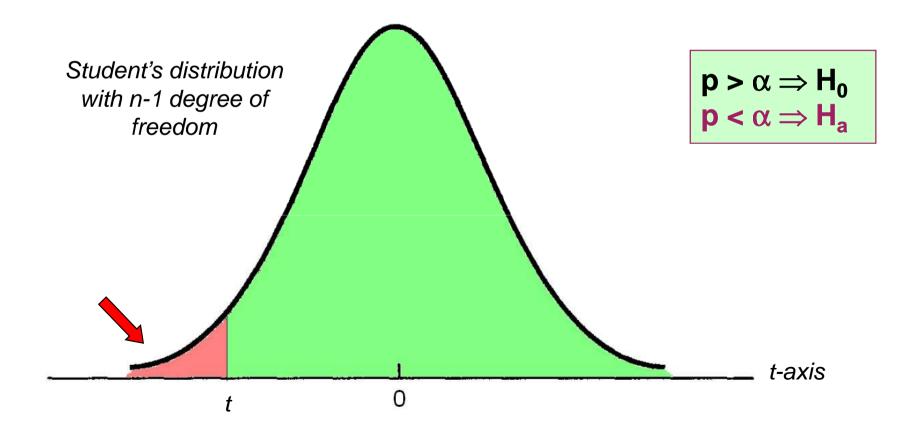


One-tailed Test

Step 2. Calculate p-value and compare it with $\boldsymbol{\alpha}$

p-value

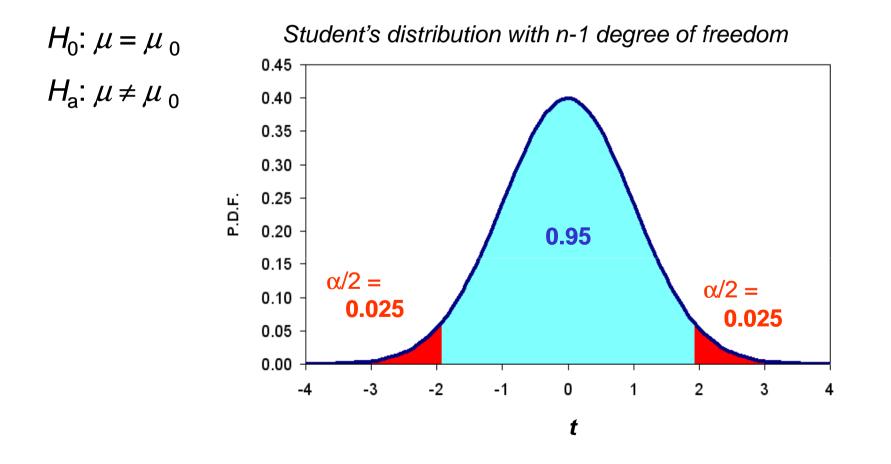
A probability, computed using the test statistic, that measures the support (or lack of support) provided by the sample for the null hypothesis. It is a probability of making error of type I



Two-tailed Test

Two-tailed test

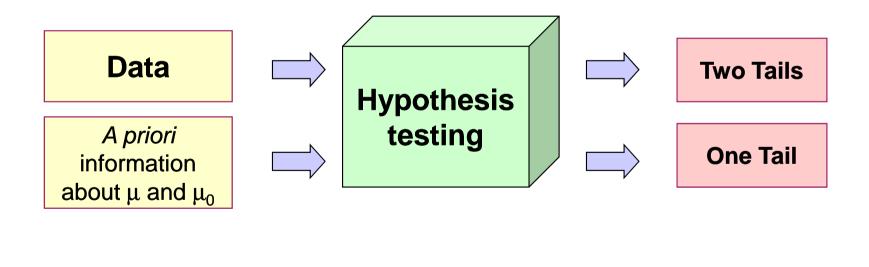
A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in either tail of its sampling distribution.



HYPOTHESIS TESTING FOR THE MEAN

One Tail Test vs. Two Tail Test

There is a raging controversy (for about the last hundred years) on whether or not it is ever appropriate to use a one-tailed test. The rationale is that if you already know the direction of the difference, why bother doing any statistical tests. While it is **generally safest to use a two-tailed tests**, there are situations where a one-tailed test seems more appropriate. The bottom line is that it is the choice of the researcher whether to use one-tailed or two-tailed research questions.



 $2 \times p$ -value_(1 tail) = p-value_(2 tails)

Unpaired t-test

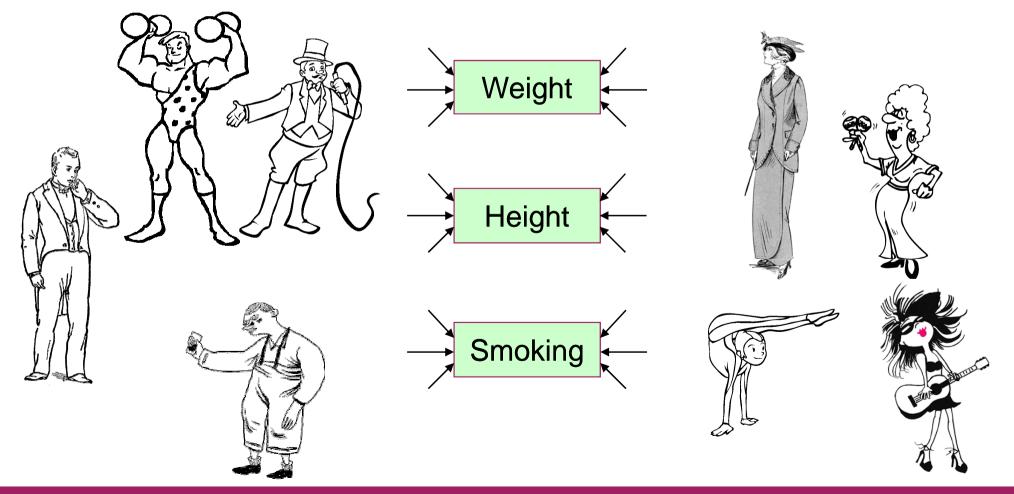
UNPAIRED t-TEST

Independent samples

Cr

CENTRE DE RECHERCHE PU

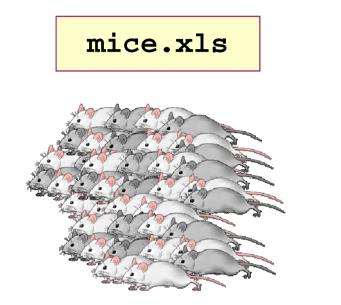
Samples selected from two populations in such a way that the elements making up one sample are chosen independently of the elements making up the other sample.



UNPAIRED t-TEST

Body weight distributions

Example



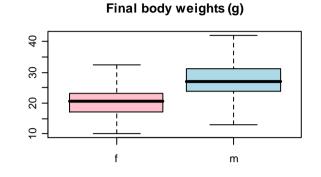
CENTRE DE RECHERCHE PUBLIC

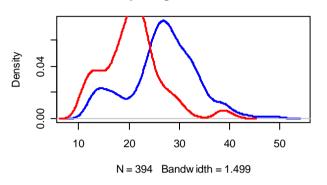
Q1: Is **body weight** for male and female significantly different?

Q2: Is **weight change** for male and female significantly different?

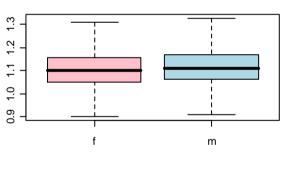
Q3: Is **bleeding time** for male and female significantly different?

Statistical data analysis in Excel.

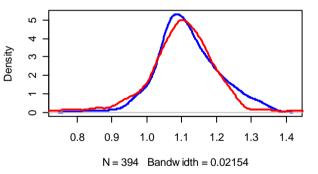




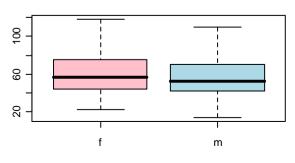
Weights change (g)



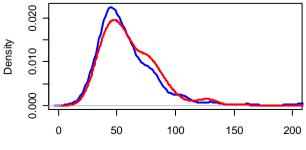
Distributions of weight change



Bleeding time (g)



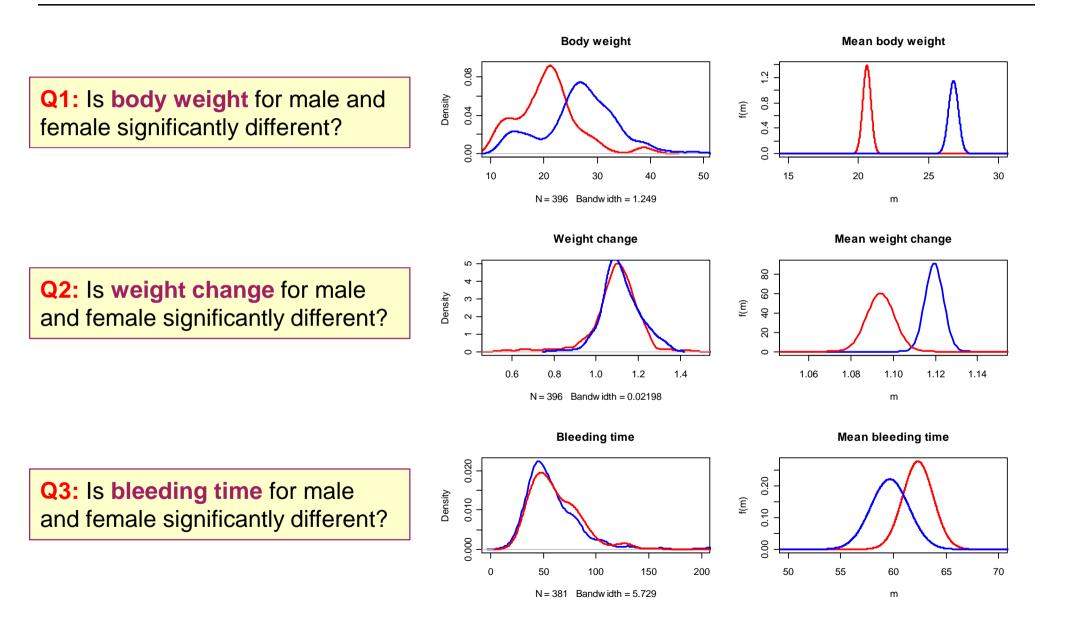
Distributions of bleeding times



N = 381 Bandwidth = 5.729

3. Testing hypotheses for means

Example

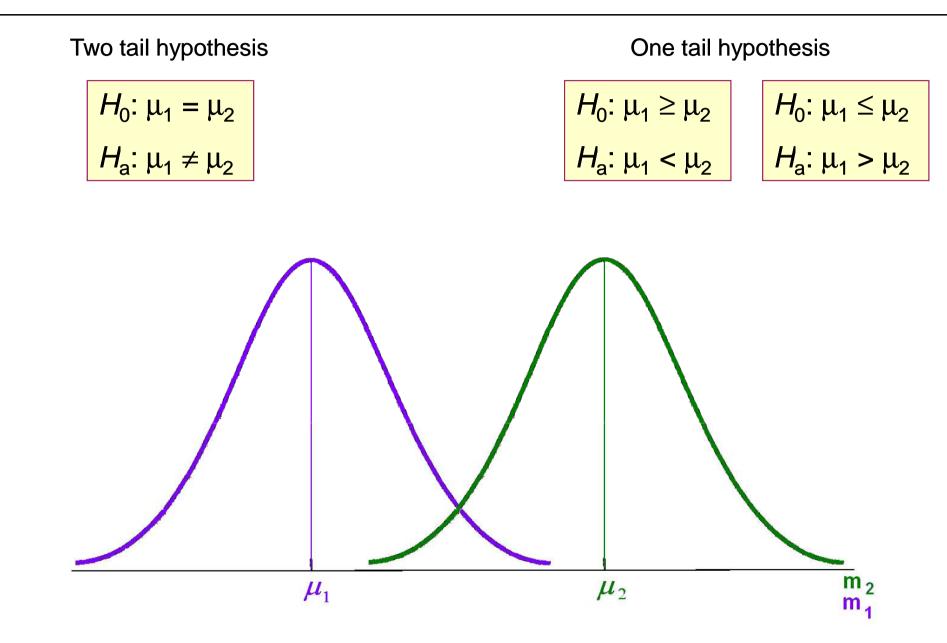


Statistical data analysis in Excel.

CENTRE DE RECHERCHE PUBLIC

HYPOTHESIS ABOUT MEANS OF 2 POPULATIONS

Theory



Theory

As we know how to work with standard hypotheses (comparison with constant μ_0), let us transform our hypothesis:

$$H_{0}: \mu_{1} = \mu_{2}$$

$$H_{a}: \mu_{1} \neq \mu_{2}$$

$$H_{a}: \mu_{2} - \mu_{1} = 0$$

$$H_{a}: \mu_{2} - \mu_{1} \neq 0$$

$$H_0: \mu = \mu_0$$
$$H_a: \mu \neq \mu_0$$

To use it, we need to know what is the distribution of $D = m_2 - m_1$

Distribution of sum or difference of 2 normal random variables The sum/difference of 2 (or more) normal random variables is a normal random variable with mean equal to sum/difference of the means and variance equal to **SUM** of the variances of the compounds.

Variables	m_1	m_2	$m_2 - m_1$
Means	μ_1	μ_2	$\mu_2 - \mu_1$
Variances	σ_1^2	σ_2^2	$\sigma_1^2 + \sigma_2^2$

HYPOTHESIS ABOUT MEANS OF 2 POPULATIONS

Theory

$$H_0: \mu_2 - \mu_1 = D_0$$
$$H_a: \mu_2 - \mu_1 \neq D_0$$

$$D_{0} = \mu_{2} - \mu_{1}$$

$$D_{0} = m_{2} - m_{1}$$

$$\sigma_{m_{2} - m_{1}} = \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

$$s_{m_{2} - m_{1}} = \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$$

Statistics to be used for hypothesis testing:

if σ is known: z-statistics

$$z = \frac{m_2 - m_1 - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

if
$$\sigma$$
 is unknown: t-statistics
$$t = \frac{m_2 - m_1 - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

This is what we call t-test !!!

HYPOTHESIS ABOUT MEANS OF 2 POPULATIONS

Unpaired t-test: Algorithm

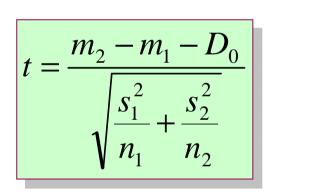
$$H_0: \mu_2 - \mu_1 = D_0$$

 $H_a: \mu_2 - \mu_1 \neq D_0$

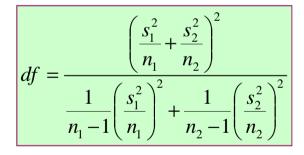
$$D_0 = m_2 - m_1$$

Usually $D_0 = 0$
$$s_{m_2 - m_1} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

1. Build the statistics to be used for hypothesis testing:



t-distribution has following degrees of freedom:



$$df = (n-1)\frac{\left(s_1^2 + s_2^2\right)^2}{\left(s_1^4 + s_2^4\right)}$$

$$(n_1 + n_2)/2 < df < n_1 + n_2$$

- 2. Calculate the p-value
- = TDIST(ABS(t),df,2)
- Or simply do:
- \Rightarrow = TTEST (array1, array2, 2, 3)

mice.xls

Using the t-test define which parameter in the table is sex-dependent

```
\Rightarrow = TTEST (array1, array2, 2, 3)
```

parameter	pval	female	male
Starting age	0.165799	65.90	66.52
Ending age	0.223033	113.91	114.61
Starting weight	5.48E-34	18.91	23.86
Ending weight	8.98E-38	20.62	26.78
Weight change	0.001405	1.09	1.12
Bleeding time	0.248716	62.34	59.67
Ionized Ca in blood	0.271336	1.23	1.24
Blood pH	0.009593	7.21	7.19
Bone mineral density	2.41E-05	0.05	0.05
Lean tissues weight	4.66E-33	15.32	19.21
Fat weight	2.28E-21	4.85	7.30

Paired t-test

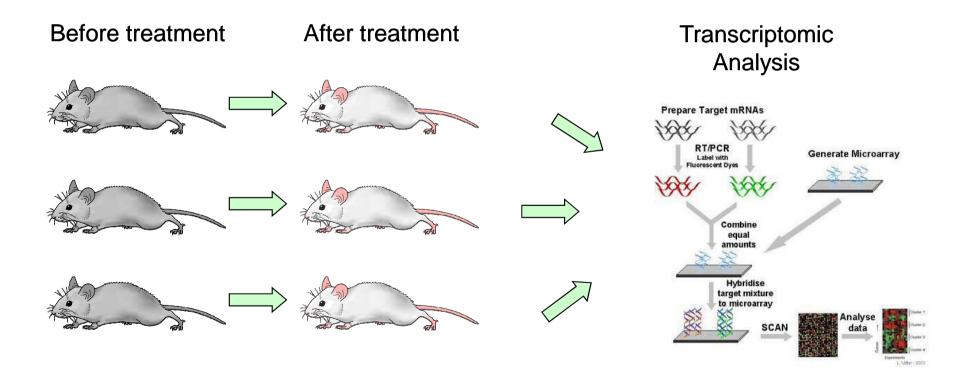
Statistical data analysis in Excel. 3. Testing hypotheses for means

HYPOTHESIS ABOUT MEANS OF 2 POPULATIONS

Dependent Samples

Matched samples

Samples in which each data value of one sample is matched with a corresponding data value of the other sample.



HYPOTHESIS ABOUT MEANS OF 2 POPULATIONS

Paired t-test: Task

bloodpressure.xls

Systolic blood pressure (mmHg)

Subject	BP before	BP after
1	122	127
2	126	128
3	132	140
4	120	119
5	142	145
6	130	130
7	142	148
8	137	135
9	128	129
10	132	137
11	128	128
12	129	133

The systolic blood pressures of n=12 women between the ages of 20 and 35 were measured before and after usage of a newly developed oral contraceptive.

Q: Does the treatment affect the systolic blood pressure?

Unpaired test

• = TTEST (array1, array2, 2, 3)

Paired test

• = TTEST (array1, array2, 2, 1)

Test	p-value
unpaired	0.414662
paired	0.014506

Hypotheses for 2 Proportions

Statistical data analysis in Excel. 3. Testing hypotheses for means

Pooled estimator of π

An estimator of a population proportion obtained by computing a weighted average of the point estimators obtained from two independent samples.

$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

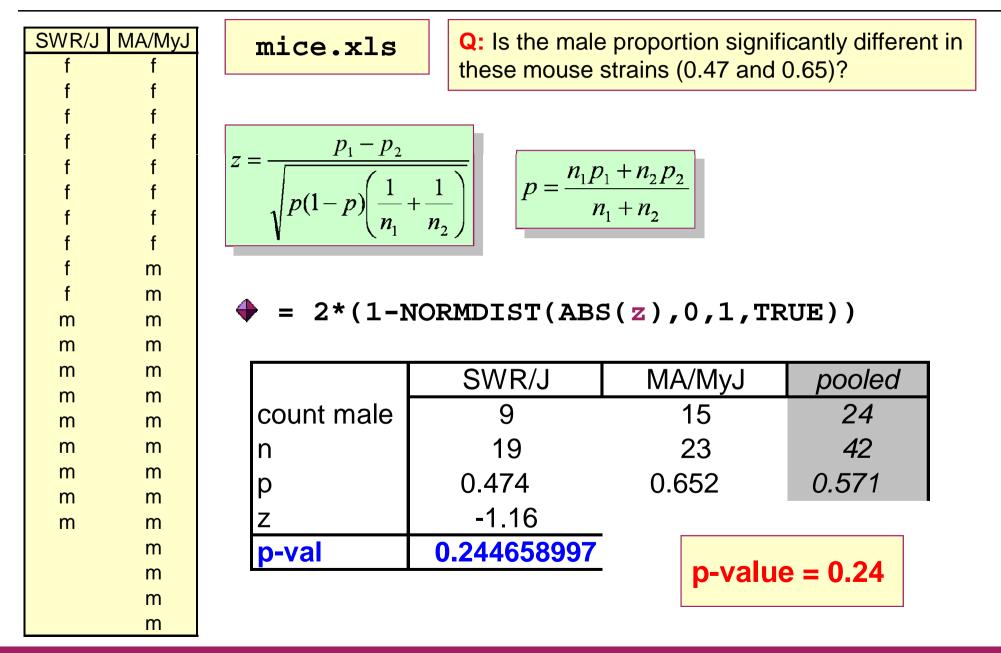
$$z = \frac{p_1 - p_2}{\sqrt{p(1 - p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$\boldsymbol{\sigma}_{p_1-p_2} = \sqrt{p(1-p)\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}$$

$$\Rightarrow = 2*(1-\text{NORMDIST}(\text{ABS}(z), 0, 1, \text{TRUE}))$$

HYPOTHESIS ABOUT PROPORTIONS OF 2 POPULATIONS

Example



Thank you for your attention

to be continued...

