

STATISTICAL DATA ANALYSIS IN EXCEL

Part 2

Practical Aspects

Dr. Petr Nazarov

petr.nazarov@crp-sante.lu

14-06-2010

- Hypotheses (theoretical)
- Unpaired t-test
- Paired t-test
- ANOVA
- Linear regression
- Multiple comparison
- Empirical confidence interval calculation
- Goodness of fit and inependence (optional)

```
http://edu.sablab.net/data
```


Null and Alternative Hypotheses

Here we continue the discussion of statistical inference by showing how hypothesis testing can be used to determine whether a statement about the value of a population parameter should or should not be rejected.

In hypothesis testing we begin by making a tentative assumption about a population parameter, i.e. by formulation of a null hypothesis.

Null hypothesis The hypothesis tentatively assumed true in the hypothesis testing procedure, H_0

Alternative hypothesis

The hypothesis concluded to be true if the null hypothesis is rejected, H_a

$$H_0: \mu \le \text{const}$$
 $H_0: \mu \ge \text{const}$ $H_0: \mu = \text{const}$ $H_a: \mu > \text{const}$ $H_a: \mu < \text{const}$ $H_a: \mu \neq \text{const}$ $H_0: \mu_1 \le \mu_2$ $H_0: \mu_1 \ge \mu_2$ $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 > \mu_2$ $H_a: \mu_1 < \mu_2$ $H_a: \mu_1 \neq \mu_2$

Type I Error

Type I error The error of rejecting	ue. Type I The er	Type II error The error of accepting H_0 when it is false.		
Level of significant The probability of ma the null hypothesis is	ce aking a Type I er s true as an equa	ror when ality		poor sensitivity False Negative,
		Population	n Condition	βerror
		H ₀ True	H _a True	
Conclusion	Accept H ₀	Correct Conclusion	Type II Error	
	Reject H ₀	Type I Error	Correct Conclusion	
	Fal	se Positive, α error		
	po	oor specificity		

One-tailed Test

Assume that we have obtained experimentally m=2.92. Is it significant?

Step 1. Introduce the test statistics

Test statistic

A statistic whose value helps determine whether a null hypothesis can be rejected

One-tailed Test

Step 2. Calculate p-value and compare it with α

p-value

A probability, computed using the test statistic, that measures the support (or lack of support) provided by the sample for the null hypothesis. It is a probability of making error of type I

Two-tailed Test

Two-tailed test

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in either tail of its sampling distribution.

$\sigma \text{ is Unknown}$

if σ in unknown:
$\sigma ightarrow$ s
$m{z} ightarrow m{t}$

	Lower Tail Test	Upper Tail Test	Two-Tailed Test
Hypotheses	$H_0: \mu \ge \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu = \mu_0$
	$H_a: \mu < \mu_0$	$H_a: \mu > \mu_0$	$H_a: \mu \neq \mu_0$
Test Statistic	$t = \frac{m - \mu_0}{s / \sqrt{n}}$	$t = \frac{m - \mu_0}{s / \sqrt{n}}$	$t = \frac{m - \mu_0}{s / \sqrt{n}}$
Rejection Rule:	Reject H ₀ if	Reject H ₀ if	Reject H ₀ if
p-Value Approach	p-value ≤ α	p-value $\leq \alpha$	p-value $\leq \alpha$
Rejection Rule:	Reject H ₀ if	Reject H ₀ if	Reject H ₀ if
Critical Value Approach	$t \leq -t_{\alpha}$	$t \ge t_{\alpha}$	$t \le -t_{\alpha/2}$ or if $t \ge t_{\alpha/2}$

HYPOTHESIS TESTING FOR THE MEAN

One Tail Test vs. Two Tail Test

There is a raging controversy (for about the last hundred years) on whether or not it is ever appropriate to use a one-tailed test. The rationale is that if you already know the direction of the difference, why bother doing any statistical tests. While it is **generally safest to use a two-tailed tests**, there are situations where a one-tailed test seems more appropriate. The bottom line is that **it is the choice of the researcher** whether to use one-tailed or two-tailed research questions.

 $2 \times p$ -value_(1 tail) = p-value_(2 tails)

Unpaired t-test

UNPAIRED t-TEST

Independent Samples

Independent samples

CCI

CENTRE DE RECHERCHE PUBLI

Samples selected from two populations in such a way that the elements making up one sample are chosen independently of the elements making up the other sample.

UNPAIRED t-TEST

Body weight distributions

Example

CENTRE DE RECHERCHE PUBLIC

Q1: Is body weight for male and female significantly different?

Q2: Is weight change for male and female significantly different?

Q3: Is bleeding time for male and female significantly different?

Statistical data analysis in Excel

Weights change (g)

Distributions of weight change

Distributions of bleeding times

N = 381 Bandw idth = 5.729

UNPAIRED t-TEST

Example

Practical Task

mice.xls

Using the t-test define which parameter in the table is sex-dependent

```
\Rightarrow = TTEST (array1, array2, 2, 3)
```

parameter	pval	female	male
Starting age	0.165799	65.90	66.52
Ending age	0.223033	113.91	114.61
Starting weight	5.48E-34	18.91	23.86
Ending weight	8.98E-38	20.62	26.78
Weight change	0.001405	1.09	1.12
Bleeding time	0.248716	62.34	59.67
Ionized Ca in blood	0.271336	1.23	1.24
Blood pH	0.009593	7.21	7.19
Bone mineral density	2.41E-05	0.05	0.05
Lean tissues weight	4.66E-33	15.32	19.21
Fat weight	2.28E-21	4.85	7.30

Paired t-test

HYPOTHESIS ABOUT MEANS OF 2 POPULATIONS

Dependent Samples

Matched samples

Samples in which each data value of one sample is matched with a corresponding data value of the other sample.

HYPOTHESIS ABOUT MEANS OF 2 POPULATIONS

Paired t-test: Task

bloodpressure.xls

Systolic blood pressure (mmHg)

Out to at		
Subject	Rh petole	BP after
1	122	127
2	126	128
3	132	140
4	120	119
5	142	145
6	130	130
7	142	148
8	137	135
9	128	129
10	132	137
11	128	128
12	129	133

The systolic blood pressures of n=12 women between the ages of 20 and 35 were measured before and after usage of a newly developed oral contraceptive.

Q: Does the treatment affect the systolic blood pressure?

• = TTEST (array1, array2, 2, 3)

Paired test

• = TTEST (array1, array2, 2, 1)

Test	p-value
unpaired	0.414662
paired	0.014506

ANOVA

Why ANOVA?

Means for more than 2 populations We have measurements for 5 conditions. Are the means for these conditions equal?

Validation of the effects

We assume that we have several factors affecting our data. Which factors are more significant? Which can be neglected?

If we would use pairwise comparisons, what will be the probability of getting error?

Number of comparisons: $C_2^5 = \frac{5!}{2!3!} = 10$

Probability of an error: $1-(0.95)^{10} = 0.4$

http://easylink.playstream.com/affymetrix/ambsymposium/partek_08.wvx

INTRODUCTION TO ANOVA

Example from Case Problem 3

As part of a long-term study of individuals 65 years of age or older, sociologists and physicians at the Wentworth Medical Center in upstate New York investigated the relationship between geographic location and depression. A sample of 60 individuals, all in reasonably good health, was selected; 20 individuals were residents of Florida, 20 were residents of New York, and 20 were residents of North Carolina. Each of the individuals sampled was given a standardized test to measure depression. The data collected follow; higher test scores indicate higher levels of depression.

Q: Is the depression level same in all 3 locations?

depression.xls

INTRODUCTION TO ANOVA

Meaning

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 H_a : not all 3 means are equal

SINGLE-FACTOR ANOVA

$$SST = SSTR + SSE$$

SINGLE-FACTOR ANOVA

ANOVA table

A table used to summarize the analysis of variance computations and results. It contains columns showing the source of variation, the sum of squares, the degrees of freedom, the mean square, and the F value(s).

In Excel use:

◆ Tools → Data Analysis → ANOVA Single Factor

SSTR

Let's perform for dataset 1: "good health"

ANOVA							
Source of Variation	SS	df		MS	F	P-value	F crit
Between Groups	78.53333	3	2	39.26667	6.773188	0.002296	3.158843
Within Groups	330.45	5	57	5.797368			
Total	408.9833	3	59				
SSE							

depression.xls

Factors and Treatments

Depression = μ + Health + Location + Health×Location + ϵ

Interaction

CENTRE DE RECHERCHE

The effect produced when the levels of one factor interact with the levels of another factor in influencing the response variable.

MULTI-FACTOR ANOVA

2-factor ANOVA with *r* Replicates: Example

MULTI-FACTOR ANOVA

2-factor ANOVA with *r* Replicates: Example

Linear Regression

Experiments

Cells are grown under different temperature conditions from 20° to 40°. A researched would like to find a dependency between T and cell number.

Dependent variable

The variable that is being predicted or explained. It is denoted by y.

Independent variable

The variable that is doing the predicting or explaining. It is denoted by **x**.

45

X

Experiments

Simple linear regression

Regression analysis involving one independent variable and one dependent variable in which the relationship between the variables is approximated by a straight line.

Building a regression means finding and tuning the model to explain the behaviour of the data

Experiments

Regression model

The equation describing how y is related to x and an error term; in simple linear regression, the regression model is $y = \beta_0 + \beta_1 x + \varepsilon$

Regression equation

The equation that describes how the mean or expected value of the dependent variable is related to the independent variable; in simple linear regression, $E(y) = \beta_0 + \beta_1 x$

Model for a simple linear regression:

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$

Regression Model and Regression Line

 $y(x) = \beta_1 x + \beta_0 + \varepsilon$

Experiments

Estimated regression equation

The estimate of the regression equation developed from sample data by using the least squares method. For simple linear regression, the estimated regression equation is $y = b_0 + b_1 x$

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$
$$\hat{y}(x) = b_1 x + b_0$$

1. Make a scatter plot for the data.

2. Right click to "Add Trendline". Show equation.

Coefficient of Determination

The Main Equation

$$SST = SSR + SSE$$

CCI

CENTRE DE RECHERCHE PUBLIC

Coefficient of Determination

Correlation coefficient

regression equation.

A measure of the strength of the linear relationship between two variables (previously discussed in Lecture 1).

A measure of the goodness of fit of the estimated regression

in the dependent variable y that is explained by the estimated

equation. It can be interpreted as the proportion of the variability

SST = SSR + SSE

 $SSR = \sum \left(\oint_{t} - \overline{y} \right)^2$

Coefficient of determination

$SSE = \sum \left(y_i - \mathbf{f}_i^2 \right)^2$

 $r = \operatorname{sign}(b_1) \sqrt{R^2}$

CENTRE DE RECHERCHE PUBLIC

ANOVA and Regression: Testing for Significance

SST = SSTR + SSE

SST = SSR + SSE

$$H_0$$
: $β_1 = 0$ insignificant
 H_a : $β_1 ≠ 0$

Example

1. Calculate manually b_1 and b_0

Intercept b0= -191.008119 Slope b1= 15.3385723 In Excel use the function:

- = INTERCEPT(y, x)
- \Rightarrow = SLOPE(y,x)

2. Let's do it automatically Tools \rightarrow Data Analysis \rightarrow Regression

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.950842308					
R Square	0.904101095					
Adjusted R Square	0.899053784					
Standard Error	31.80180903					
Observations	21					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	181159.28	53 181159.3	179.1253	4.01609E-11
Residual	19	19215.74	61 1011.355	'n	
Total	20	200375.03	14		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-191.0081194	35.07510626	-5.445689	2.97E-05	-264.4211603	-117.5950784	-264.4211603	-117.5950784
X Variable 1	15.33857226	1.146057646	13.38377	4.02E-11	12.93984605	17.73729848	12.93984605	17.73729848

REGRESSION ANALYSIS

Confidence and Prediction

Confidence interval

The interval estimate of the mean value of y for a given value of x.

Prediction interval

The interval estimate of an individual value of y for a given value of x.

Residuals

C

CENTRE DE RECHERCHE PUBLIC

Correction for Multiple Comparison

Please download the data from edu.sablab.net/data/xls

all_data.xls

Correct Results and Errors

Probability of an error in a multiple test:

1-(0.95)number of comparisons

False discovery rate (FDR)

FDR control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors).

		Population Condition					
		H ₀ is TRUE	H ₀ is FALSE	Total			
sion	Accept H ₀ (non-significant)	U	T	m-R			
onclus	Reject H ₀ (significant)	V	S	R			
Ŭ	Total	m_0	$m-m_0$	т			

$$FDR = E\left(\frac{V}{V+S}\right)$$

False Discovery Rate

Assume we need to perform k = 100 comparisons, and select maximum FDR = $\alpha = 0.05$

Independent tests

The Simes procedure ensures that its expected value
$$\mathbb{E}\left[\frac{V}{V+S}\right]$$
 is less than a given α (Benjamini and Hochberg 1995). This procedure is valid when the *m* tests are independent. Let $H_1 \dots H_m$ be the null hypotheses and $P_1 \dots P_m$ their corresponding p-values. Order these values in increasing order and denote them by $P_{(1)} \dots P_{(m)}$. For a given α , find the largest *k* such that $P_{(k)} \leq \frac{k}{m} \alpha$.
Then reject (i.e. declare positive) all $H_{(i)}$ for $i = 1, \dots, k$.

Note that the mean lpha for these m tests is $rac{lpha(m+1)}{2m}$ which could be used as a rough FDR, or RFDR, "lpha adjusted

for *m* indep. tests." The RFDR calculation shown here provides a useful approximation and is not part of the Benjamini and Hochberg method; see AFDR below.

False Discovery Rate

Assume we need to perform k = 100 comparisons, and select maximum FDR = $\alpha = 0.05$

$$FDR = E\left(\frac{V}{V+S}\right)$$

Expected value for FDR < α if

$$P_{(k)} \leq \frac{k}{m} \alpha$$

$$\frac{mP_{(k)}}{k} \le \alpha$$

Example: Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL), is a form of leukemia, or cancer of the white blood cells characterized by excess lymphoblasts.

all_data.xls contains the results of full-trancript profiling for ALL patients and healthy donors using Affymetrix microarrays. The data were downloaded from ArrayExpress repository and normalized. The expression values in the table are in \log_2 scale.

Let us analyze these data:

- Calculate log-ratio (logFC) for each gene
- Calculate the p-value based on t-test for each gene
- Perform the FDR-based adjustment of the p-value.

Calculate the number of up and down regulated genes with FDR<0.01

How would you take into account logFC?

Example score:

 $score = -\log(adj.p.value) \cdot |logFC|$

look for "tetraspanin 7" + leukemia in google ③

Results are never perfect...

Empirical Interval Estimation for Random Functions

Sum and Square of Normal Variables

Distribution of sum or difference of 2 normal random variables

The sum/difference of 2 (or more) normal random variables is a normal random variable with mean equal to sum/difference of the means and variance equal to SUM of the variances of the compounds.

$$x \pm y \rightarrow Normal \ distribution$$
$$E[x \pm y] = E[x] \pm E[y]$$
$$\sigma_{x \pm y}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2}$$

Distribution of sum of squares on *k* standard normal random variables

The sum of squares of *k* standard normal random variables is a χ^2 with *k* degree of freedom.

if
$$x_1, ..., x_k \to Normal distribution$$

$$\sum_{i=1}^k x_i^2 \to \chi^2 \quad with \ d.f. = k$$

What to do in more complex situations?

$$\frac{x}{y} \to ? \qquad \qquad \sqrt{x} \to ? \qquad \qquad \log(|x|) \to ?$$

Terrifying Theory

Try to solve analytically?

Simplest case.
$$E[x] = E[y] = 0$$

Ratio distribution

is

From Wikipedia, the free encyclopedia

A **ratio distribution** (or *quotient distribution*) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio

$$Z = X/Y$$
a ratio distribution.
$$p_Z(z) = \frac{b(z) \cdot c(z)}{a^3(z)} \frac{1}{\sqrt{2\pi}\sigma_x \sigma_y} \left[2\Phi\left(\frac{b(z)}{a(z)}\right) - 1 \right] + \frac{1}{a^2(z) \cdot \pi\sigma_x \sigma_y} e^{-\frac{1}{2}\left(\frac{\mu_x^2}{\sigma_x^2} + \frac{\mu_y^2}{\sigma_y^2}\right)} \right]$$

where

$$\begin{aligned} a(z) &= \sqrt{\frac{1}{\sigma_x^2} z^2 + \frac{1}{\sigma_y^2}} \\ b(z) &= \frac{\mu_x}{\sigma_x^2} z + \frac{\mu_y}{\sigma_y^2} \\ c(z) &= e^{\frac{1}{2} \frac{b^2(z)}{a^2(z)} - \frac{1}{2} \left(\frac{\mu_x^2}{\sigma_x^2} + \frac{\mu_y^2}{\sigma_y^2}\right)} \\ \Phi(z) &= \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} \ du \end{aligned}$$

Practical Approach

Two rates where measured for a PCR experiment: experimental value (X) and control (Y). 5 replicates where performed for each.

From previous experience we know that the error between replicates is normally distributed.

Q1: provide an interval estimation for the fold change X/Y (α =0.05)

Q2: provide an interval estimation for the log fold change $log_2(X/Y)$

#	Experiment	Control
1	215	83
2	253	75
3	198	62
4	225	91
5	240	70
Mean	226.2	76.2
StDev	21.39	11.26

Let us use a *numerical simulation*...

Practical Approach

1. Generate 2 sets of 65536 normal random variable with means and standard deviations corresponding to ones of experimental and control set.

In Excel go: Tools \rightarrow Data Analysis:

Random Number Generation

If you do not have Data Analysis tool – approximate normal distribution by sum of uniform:

$$N(x, m_x, \sigma_x) = m_x + \sigma_x \left(\sum_{i=1}^{12} U(x_i) - 6 \right)$$

$$\bullet$$
 = RAND() \leftarrow $U(x)$

Mean	226.2	76.2
StDev	21.39	11.26

Random Number Gene	ration		
Number of <u>V</u> ariables:		1	ОК
Number of Random Num <u>b</u> e	ers:	65536	Cancel
Distribution:	Normal		Help
Parameters			
M <u>e</u> an =	76.2		
Standard deviation =	11.26		
<u>R</u> andom Seed:			
Output options			
Output Range:	\$G	i:\$G	
O New Worksheet Ply:			
🔘 New <u>W</u> orkbook			

Practical Approach

1. Generate 2 sets of 65536 normal random v with means and standard deviations correspo	Mean	226.2	76.2		
	StDev	21.39	11.26		
ones of experimental and control set.	sim.m	226.088799	76.2823		
	sim.s	21.379652	11.2885		
 Build the target function. For Q1 build X/Y 	X/Y.m X/Y.s min max	3.03 0. -8.14 7 72	289298 566865 098141 162205		

3. Study the target function. Calculate summary, build histogram.

4. If you would like to have 95% interval, calculate 2.5% and 97.5% percentiles.

In Excel use function

=PERCENTILE(data,0.025)

Practical Approach

What was a "mistake" in the previous case?

There we spoke about prediction interval of X/Y. Now let's produce the interval estimation for mean X/Y

Mean	226.2	. 76.2	2
StDev	9.57	5.03	3
X/Y.m	2.98047943		
X/Y.s	0.23616818		
min	2.01556098		
max	4.31131109		
		3 / 8 1	
	$ \in [2.35],$	J.40]	

Practical Approach

Q2: provide an interval estimation for the log fold change log2(X/Y)

S	imulation	Normal
2.50%	1.3546	1.3482
97.50%	1.7998	1.7939

Goodness of Fit and Independence

TEST OF GOODNESS OF FIT

Multinomial Population

Multinomial population

A population in which each element is assigned to one and only one of several categories. The multinomial distribution extends the binomial distribution from two to three or more outcomes.

Contingency table = Crosstabulation

Contingency tables or crosstabulations are used to record, summarize and analyze the relationship between two or more categorical (usually) variables.

The I	new tre	atment	for a dis	sease is	tested	on 20)0 pati	ents.
The o	outcom	es are c	lassifie	d as:				

- A patient is **completely treated**
- B disease transforms into a chronic form
- C treatment is unsuccessful 😕

In parallel the 100 patients treated with standard methods are observed

Category	Experimental	Control
A	94	38
В	42	28
С	64	34
Sum	200	100

Statistical data analysis in Excel

Are the proportions *significantly different* in control and experimental groups?

TEST OF GOODNESS OF FIT

Goodness of Fit

Goodness of fit test

A statistical test conducted to determine whether to reject a hypothesized probability distribution for a population.

Model – our assumption concerning the distribution, which we would like to test.

Observed frequency – frequency distribution for experimentally observed data, f_i

Expected frequency – frequency distribution, which we would expect from our **model**, e_i

Hypotheses for the test:

 H_0 : the population follows a multinomial distribution with the probabilities, specified by **model**

 H_a : the population does not follow ... model

Test statistics for goodness of fit

 χ^2 has **k**-1 degree of freedom

At least 5 expected must be in each category!

TEST OF GOODNESS OF FIT

Experimental

94

Category

Α

Example

Control

38

A – pa B – dis C – tre In paralle are obser	itient is comp sease transfo eatment is un I the 100 pati ved	oletely treate orms into a cl successful ients treated	ed hronic form ⊗ with standar	d methods	B C Sum	42 64 20	2 28 4 34 0 100
 1. Select the model and calculate expected frequencies Let's use control group (classical treatment) as a model, then: 					2. Compathe experi	re expect mental or $\chi^2 = \sum_{i=1}^{k} \frac{(j)^2}{2}$	ted frequencies with hes and build χ^2 $\frac{f_i - e_i)^2}{e_i}$
	Control	Model for	Exported	Experimental)	1	3. Calculate
Category	frequencies	control	freq., e	freq., f	Category	(f-e)2/e	p-value for χ^2 with
А	38	0.38	76	94	A	4.263	d.f. = <i>k</i> –1
В	28	0.28	56	42	В	3.500	
С	34	0.34	68	64	C	0.235	•
Sum	100	1	200	200	Chi2	7.998	1
🔶 = Сн	IDIST(χ^2	.d.f.)					

The new treatment for a disease is tested on 200 patients. The outcomes are classified as:

 \bullet = CHITEST(f, e)

Goodness of Fit for Independence Test: Example

Alber's Brewery manufactures and distributes three types of beer: **white**, **regular**, and **dark**. In an analysis of the market segments for the three beers, the firm's market research group raised the question of whether preferences for the three beers differ among **male** and **female** beer drinkers. If beer preference is independent of the gender of the beer drinker, one advertising campaign will be initiated for all of Alber's beers. However, if beer preference depends on the gender of the beer drinker, the firm will tailor its promotions to different target markets.

beer.xls

 H_0 : Beer preference is **independent** of the gender of the beer drinker

 H_a : Beer preference is **not independent** of the gender of the beer drinker

sex\beer	White	Regular	Dark	Total
Male	20	40	20	80
Female	30	30	10	70
Total	50	70	30	150

Goodness of Fit for Independence Test: Example

1. Build model
assuming
independence

sex\beer	White	Regular	Dark	Total
Male	20	40	20	80
Female	30	30	10	70
Total	50	70	30	150

	White	Regular	Dark	Total
Model	0.3333	0.4667	0.2000	1

2. Transfer the model into expected frequencies, multiplying model value by number in group

sex\beer	White	Regular	Dark	Total
Male	26.67	37.33	16.00	80
Female	23.33	32.67	14.00	70
Total	50	70	30	150

$$e_{ij} = \frac{(Row \ i \ Total)(Column \ j \ Total)}{Sample \ Size}$$

3. Build χ^2 statistics

 χ^2 distribution with d.f.=(n-1)(m-1), provided that the expected frequencies are 5 or more for all categories.

4. Calculate p-value

p-value = 0.047, reject H₀

TEST FOR CONTINUOUS DISTRIBUTIONS

Test for Normality: Example

Chemline hires approximately 400 new employees annually for its four plants. The personnel director asks whether a normal distribution applies for the population of aptitude test scores. If such a distribution can be used, the distribution would be helpful in evaluating specific test scores; that is, scores in the upper 20%, lower 40%, and so on, could be identified quickly. Hence, we want to test the null hypothesis that the population of test scores has a normal distribution. The study will be based on 50 results.

TEST FOR CONTINUOUS DISTRIBUTIONS

Test for Normality: Example

ch	emline	xls	Lower 10%: $68.42 - 1.28(10.41) = 55.10$ Lower 20%: $68.4284(10.41) = 59.68$ Lower 30%: $68.4252(10.41) = 63.01$ Lower 40%: $68.4225(10.41) = 65.82$ Mid-score: $68.42 + .0(10.41) = 68.42$
Mean Standar Sample Count	rd Deviation variance	68.42 10.4141 108.4527 50	Upper 40%: $68.42 + .25(10.41) = 71.02$ Upper 30%: $68.42 + .52(10.41) = 73.83$ Upper 20%: $68.42 + .84(10.41) = 77.16$ Upper 10%: $68.42 + 1.28(10.41) = 81.74$
Bin	Observed frequency	Expected frequency	
55.1	5	5	
59.68	5	5	55 59 63 63 63 63 63 63 63 63 63 63 63 63 63
63.01	9	5	
65.82	6	5	χ^2 distribution with d.f.= $n - p - 1$,
68.42	2	5	$\chi^2 = \sum_{i=1}^{n} \frac{(f_i - e_i)}{(f_i - e_i)}$ where p_i number of estimated
71.02	5	5	$\frac{1}{i=1}$ $\frac{1}{e_i}$ where $p =$ number of estimated
73.83	2	5	parameters
77.16	5	5	
81.74	5	5	p = 2 includes mean and variance
More	6	5	d.f. = $10 - 2 - 1$ p-value = 0.41 ,
Total	50	50	$\chi^2 = 7.2$ cannot reject H ₀

Thank you for your attention

