

Deconvolution of Mixed Transcriptomes Improves Characterization of Cancer Patients

Petr V Nazarov, Thomas Eveno, Maryna Chepeleva, Tony Kaoma, Arnaud Muller, Francisco Azuaje

petr.nazarov@lih.lu

DKFZ, Heidelberg

2019-09-15

Issues

Imagine we are going to analyze RNA from a tumor biopsy (sample):

Independent Component Analysis

One of the methods to solve cocktail party problem...

Method

2019-09-15

from A. Zinovyev, et al, Biochem Biophys Res Commun. 2013,18;430(3):1182-7 https://www.ncbi.nlm.nih.gov/pubmed/23261450

More details: Sompriac, Nazarov, ... Zinovyev, Int J Mol Sci, 2019, 20(18)

Why consensus ICA is better than a simple ICA?

Reproducibility between metagenes (S) in a single run

Reproducibility between metagenes (S) with many runs

Similarity between same **B** metagenes

Ovelap between gene signatures

A balance between sensitivity and reproducibility

MelanomICA: mRNA and miRNA of melanoma

Nazarov, Wieneke-Baldacchino et al BMC Medical Genomics, 2019

MelanomICA: ICA for Melanoma Patients

Only 25% of tumors originate from nevi (moles)!

Properties:

- Rapid progression
- Early metastasis
- Highest mutation load
- Immune response +/-

➢ 5-year survival:

- > 98% when primary
- > 17% after spread

Data

Age-standardized new cases per year

- Discovery set 473 primary and metastatic samples
- Validation set 44 independent metastatic samples
- Investigation set 3 clinical and 2 control samples

Tumor Normal

Proposed Concept

We developed

consICA

https://gitlab.com/biomodlih/consica

- Using R-package *fastICA*
- Consensus = mean
- Multiple runs excluding one sample, with different initial estimations
- Multiplatform
- Multicore
- Automatic report generator
- No GUI

j – patient index

i – component index

- R_{i}^{2} stability of *i*-th component (from 0 to 1)
- H_i Cox' log hazard ratio calculated on training set
- M^*_{ii} element of centered & scaled M-matrix

MelanomICA

Cluster							
Accuracy	Actual cluster						
90.0%	immune	keratine	MITF-low				
immune	160	9	6				
keratine	9	91	6				
MITF-low	1	2	47				

MelanomICA

Prognostics

ICA-based risk score

$$RS_j = \sum_{i=1}^{i=k} R_i^2 H_i M_{i,j}^*$$

- j patient index
- i component index
- R_{i}^{2} stability of *i*-th component (from 0 to 1)
- $H_i \mathrm{Cox'} \log$ hazard ratio calculated on training set
- $M^*_{i,j}$ element of centered & scaled M-matrix

MelanomICA

Deciphering biological processes and cell types

Cluster	Compo- nent	Risk (p-value)	Meaning	P2PM	P4PM	P6PM	P4NS	NHEM
	RIC2	decreased (1.8e-4)	B cells	0.11	0.07	0.02	0.19	0.01
	RIC25	decreased (2.8e-7)	T cells	0.26	0.06	0.24	0.18	0.00
RIC27 no effect B cells			B cells	0.80	0.37	0.31	0.80	0.00
E	RIC28	no effect	response to wounding	0.34	0.57	0.78	0.43	0.84
_	RIC37 no effect IFN signalling pathway				0.66	0.99	0.90	1.00
	RIC57	no effect	monocytes	0.00	0.25	0.24	0.02	0.00
	MIC20 decreased (1.2e-4) T cells, chr1q32.2					0.37	0.02	0.19
-	RIC13	no effect	cells of stroma	0.81	0.40	0.50	0.86	0.03
anc	RIC49	no effect	endothelial cells	0.73	0.12	0.29	0.84	0.00
romal ngioge	MIC22	no effect	miR-379/miR-410 cluster, chr14q32.2,14q32.31		0.20	0.27	0.38	0.16
a Ct	MIC25	no effect	stromal cells; clusters: chr1q24.3, 5q32, 17p13.1, 21q21.1	0.97	0.85	0.76	0.80	0.26
RIC5		increased (5.8e-3)	epidermis development and keratinisation		0.93	0.96	0.92	0.87
ted	RIC7 RIC7 (8.9e-6) keratinisation		0.94	0.93	0.93	0.95	0.57	
RIC19 increased epidermis developm (4.0e-2) keratinisation		epidermis development and keratinisation	1.00	0.62	0.22	1.00	0.93	
Ski	RIC31	RIC31 increased epidermis development and (2.2e-2) keratinisation		0.98	0.85	0.89	0.99	0.28
	MIC9	increased (2.9e-2)	skin-specific miRNAs	0.95	0.88	0.87	0.91	0.83
	RIC4	increased (5.4e-3)	melanin biosynthesis		0.77	1.00	0.21	0.96
ocytes	RIC16 decreased (5.1e-4) melanosomes (neg		melanosomes (negative gene list)	0.68	0.77	0.54	0.75	0.39
Melano	MIC11 no effect potential regulators of malignant cells, chrXq27.3		0.21	0.96	0.62	0.13	0.48	
-	MIC14	decreased (1.5e-2)	potential regulators of melanocytes, chrXq26.3	0.01	0.29	0.67	0.29	0.38
	RIC55	increased (3.0e-2)	cell cycle	0.48	0.46	0.88	0.00	0.53
Other	RIC6	decreased (5.5e-3)	potentially linked to neuron differentiation	0.43	0.73	0.59	0.46	0.01
MIC1		increased (9.4e-4)	regulators of EMT	0.11	0.07	0.02	0.19	0.01

ESTIMATE

D

Article | OPEN | Published: 11 October 2013

×

score

mmune

Inferring tumour purity and stromal and immune cell admixture from expression data

Kosuke Yoshihara, Maria Shahmoradgoli, Emmanuel Martínez, Rahulsimham Vegesna, Hoon Kim, Wandaliz Torres-Garcia, Victor Treviño, Hui Shen, Peter W. Laird, Douglas A. Levine, Scott L. Carter, Gad Getz, Katherine Stemke-Hale, Gordon B. Mills & Roel G.W. Verhaak 🛤

Nature Communications 4, Article number: 2612 (2013) | Download Citation 🛓

 $r^2 = 0.916$ $r^2 = 0.557$

Weights of RIC25 Weights of RIC13

Data integration: mRNA + miRNA + ...

Nazarov, Wieneke-Baldacchino et al BMC Medical Genomics, 2019

2019-09-15

DEMICS: Gliomas

DEMICS: brain tumours

- Glioblastoma multiform (GBM) is the 4th grade glioma \succ
- No known carcinogens
- Poor prognosis for GBM, good for low grade gliomas (LGG)
- Some GBMs originate from LGG
- GBM and LGG biopsies should share some cell types

Tumor cell infiltration

Datasets tested:

- **TCGA-GBM**: 171 RNA-seq, 441 microarrays
- TCGA-LGG: 530 RNA-seq
- CGGA (LGG+GBM): 325 RNA-seq
- LRNO cell lines & PDX (A.Golebiewska, S.Fritah)

Ferreira da Ponte et al, JNM,

http://jnm.snmjournals.org/content/58/10/1574.abstract

DEMICS: Validation with Cell Lines

NORLUX cell line data from

Anna Golebiewska, Sabrina Fritah, Simone Niclou and other

Anna Golebiewska (microarrays):

- 2 normal tissues samples
- 6 patient biopsy samples
- 24 xenografts
- 12 patient derived cell lines
- 14 stable cell lines & their xenografts

Technical/trivial components: gender and platforms

ic.2

DEMICS: Validation with Cell Lines

DEMICS: Validation on Independent Ddataset

DEMICS: CGGA Cohort

Chinese Glioma Genome Altas (CGGA)

- 325 glioma patients
- 148 IDHwt, 152 IDHmut
- Some mutations, Verhaak's classes, histology and survival data are provided
- but FPKM only: gene-length correction does not help

Strong differences in the data between TCGA and CGGA

2019-09-15

Independent Validation: CGGA Cohort

0.4

0.2

0.0

0

20

Mixing CGGA & TCGA

Gender: acc = 0.97	-> 0.98	
Subtype: acc = 0.62	-> 0.87	
IDH1 status: acc = 0.80	-> 0.97	ID

Training on TCGA and predicting CGGA

Gender		Female			Male		
pred.Female		117			6		
pred.Male	5		5	1		.97	
Subtype	С	L	ME	1	NE	PN	
pred.CL	e	5	0		0	0	
pred.ME	66		68	• •	21	22	
pred.NE	1		0	ļ	52	5	
pred.PN	1		0		8	75	

IDH1	Mutant	WT
pred.Mutant	101	9
pred.WT	51	139

Classification:

Much lower accuracy then expected, when datasets are strictly separated.

Adding a part of CGGA data to training set significantly improved classification

1.0 Predicted low HS Predicted high HS 0.8 0.6 Survival: Good predictions

40

Time

CGGA cohort pv=3.413e-18

(may be linked to task

simplicity?)

60

80

21

2019-09-15

- ICA corrects technical biases in the data
- > ICA captures **biologically-relevant signals** of cell populations and biological processes
- ICA provides good features for patient classification
- > ICA-based features can be **united in a risk score**, predicting patient survival
- We hope that ICA decomposition can be used for better data integration (under investigation)

Acknowledgements

Luxembourg Institute of Health

Quantitative Biology Unit

Gunnar Dittmar (Head of the Unit)

Multiomics Data Science

LSRU, UniLu

Dr. Anke Wieneke Dr. Stephanie KREIS

NORLUX Neuro-Oncology, LIH

Dr. Anna GOLEBIEWSKA

Prof. Simone NICLOU

Computational Biomedicine

2019-09-15

Francisco

Azuaje

(PI)

Katharina Baum (Postdoc)

C17/BM/11664971/DEMICS

Muller (Bioinf.)

Tony Kaoma (Bioinf.)

Petr (PI)

Thomas Eveno

Chepeleva (MSc student)(MSc student) Institute Curie, France Dr. Andrei ZINOVYEV

University of Bergen, Norway Prof. Inge JONASSEN (Mentor

Arnaud

Fonds National de la

Yue Zhang (PhD student)

Nazarov

Sang Yoon Kim (Bioinf.)

Maryna

Recherche Luxembourg

Supported by Luxembourg National Research Fund

Supplementary Slides

Classification: Cross-validation Scheme

Classifiers can perform differently on different features. What is the most optimal for ICA?

Tested methods

- LR logistic regression
- **PLSDA** partial least square discriminant analysis
- LDA linear discriminant analysis
- MDA mixture discriminant analysis
- **RDA** regularized discriminant analysis
- FDA flexible discriminant analysis
- **kSVM** support vector machine (kernlab)
- eSVM support vector machine (e1071)
- KNN k-nearest neighbors
- **RF** random forest (randomForest)
- **RRF** regularized random forest
- NB naive Bayes classifier
- **GBM** gradient boosting model
- ABM AdaBoost model

LDA is a generalization of Fisher's linear discriminant, a method used to find a **linear combination of features** that separates several classes of objects. The resulting combination may be used as a linear classifier or for dimensionality reduction before later classification.

PCA: component axes that maximize the variance

LDA: maximizing the component axes for class-separation

Classification Method Selection

Mean Accuracy (5-fold cross-validation)

(constant effect of variables was removed)

Other Feature Selection Methods / Data Sources

Nazarov et al https://www.biorxiv.org/content/10.1101/395145v1

Predicting Survival: Approach for Cross-validation

