

Non-negative Matrix Factorization for Methylation Data Deconvolution

Update on the Data Challenge and the related paper: Lutsik et al

Petr Nazarov

petr.nazarov@lih.lu

LIH, Strassen, Luxembourg

2019-01-22

Outline

Concept of NMF

Update on the Data Challenge

Lutsik *et al. Genome Biology* (2017) 18:55 DOI 10.1186/s13059-017-1182-6

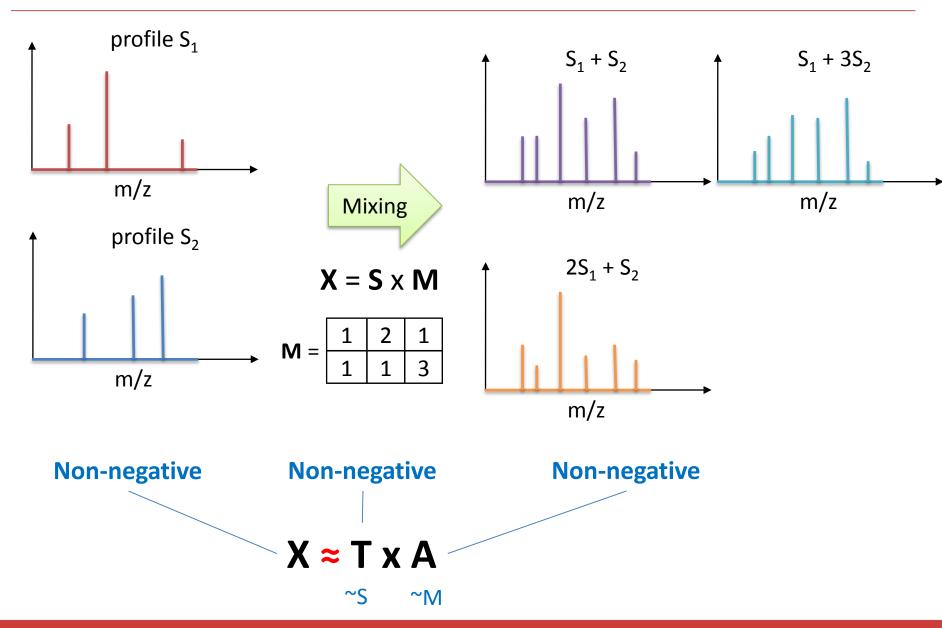
METHOD

Genome Biology

Open Access

MeDeCom: discovery and quantification of latent components of heterogeneous methylomes

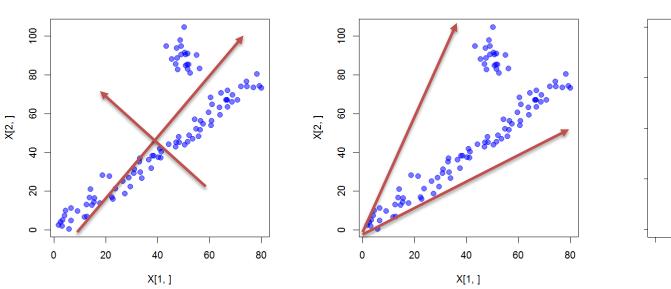
Pavlo Lutsik^{1,4†}, Martin Slawski^{2,3,5†}, Gilles Gasparoni¹, Nikita Vedeneev², Matthias Hein^{2*} and Jörn Walter^{1*} 💿


Abstract

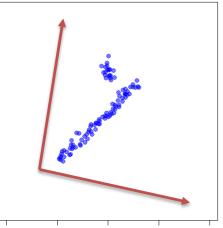
It is important for large-scale epigenomic studies to determine and explore the nature of hidden confounding variation, most importantly cell composition. We developed MeDeCom as a novel reference-free computational framework that allows the decomposition of complex DNA methylomes into latent methylation components and their proportions in each sample. MeDeCom is based on constrained non-negative matrix factorization with a new biologically motivated regularization function. It accurately recovers cell-type-specific latent methylation components and their proportions. MeDeCom is a new unsupervised tool for the exploratory study of the major sources of methylation variation, which should lead to a deeper understanding and better biological interpretation.

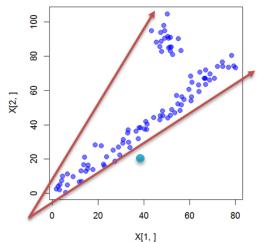
Keywords: DNA methylation, DNA methylome, Cell heterogeneity, Deconvolution, Matrix factorization, Epigenetics

Concept: NMF



Concept: NMF


NMF



NMF: issue 1

NMF: issue 2

- Multiple solutions
- Is the minimal description stable?
- \Rightarrow we need:
- additional restrictions
- regularizations during fitting

Place & Participants

Invited speakers:

- > E. Andres Houseman, independent data scientist, USA, RefFreeEWAS
- Pavlo Lutsik, from DKFZ, Heildeberg, Germany, MeDeCom
- Eugene Lurie, from BCM, Houston, USA, Edec

Participants:

> 9 (10) commands 3-4 members: FR, DE, US, RU, LU, NL, ... ?

2019-01-22

Journal club, Proteome and Genome Research Unit, LIH 5

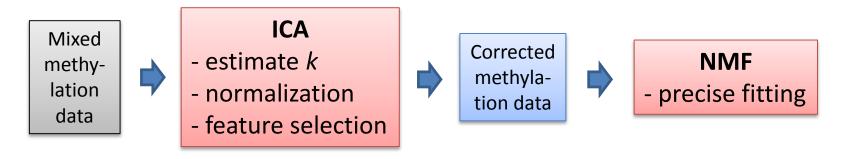
Structures

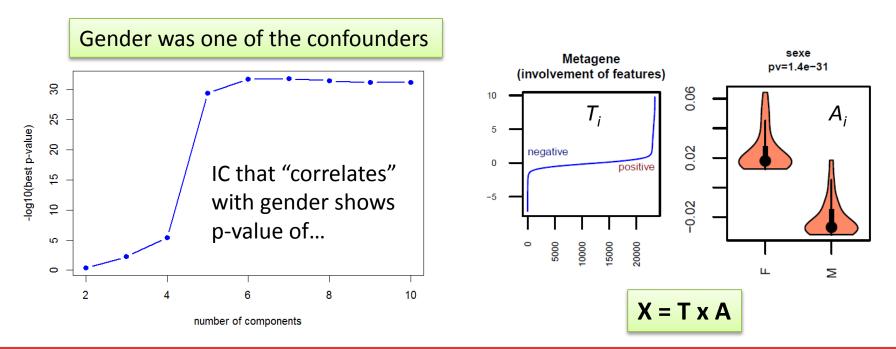
2 sub-challenges: X = S x M + noise

- > **Training**: 3 cell types, 100 synthetic samples, no confounding variables
- > Main: k cell types (k=5), 100 synthetic samples, y confounding variables

Our team:

- Fabian Bergmann (MSc student) IT, submits, fine tuning, RefFreeEWAS
- Tony Kaoma wide search for alternative algorithms, MeDeCom
- Petr Nazarov ICA, moderating FB ③


Reasons why we won sub-challenge 1:


- our tuning of the parameters was more efficient RefFreeEWAS overfits!
- search for methods for initial estimation by TK helped

...and ICA was not needed at al 🙂 !

Winning strategy for sub-challenge 2

2019-01-22

Journal club, Proteome and Genome Research Unit, LIH 7

Teams

Conclusions & Results

- Even the top methods on NMF must be fine-tuned in order to give good results
- ICA is of no help for simple tasks. But can be useful in more complex situations (e.g. confounders)
- Pavlo Lutsik, the developer of MeDeCom and coauthor of RnBeads, was "as<u>toni</u>shed" by Tony's results on his own tool and proposed to work together on the protocols paper
- The general paper based on the challenge was planned, but i.m.h.o., the chances are vague
- ➢ It brings new knowledge and simply... a lot of fun ☺

supported by Luxembourg National Research Fund (C17/BM/11664971/DEMICS)

Lutsik et al. Genome Biology (2017) 18:55 DOI 10.1186/s13059-017-1182-6

methylomes

Pavlo Lutsik^{1,4†}, Martin Slawski^{2,3,5†}, Gilles Gasparoni¹, Nikita Vedeneev², Matthias Hein^{2*} and Jörn Walter^{1*} 💿

MeDeCom: discovery and quantification

of latent components of heterogeneous

Abstract

It is important for large-scale epigenomic studies to determine and explore the nature of hidden confounding variation, most importantly cell composition. We developed MeDeCom as a novel reference-free computational framework that allows the decomposition of complex DNA methylomes into latent methylation components and their proportions in each sample. MeDeCom is based on constrained non-negative matrix factorization with a new biologically motivated regularization function. It accurately recovers cell-type-specific latent methylation components and their proportions. MeDeCom is a new unsupervised tool for the exploratory study of the major sources of methylation variation, which should lead to a deeper understanding and better biological interpretation.

Keywords: DNA methylation, DNA methylome, Cell heterogeneity, Deconvolution, Matrix factorization, Epigenetics

2019-01-22

METHOD

Open Access

Genome Biology

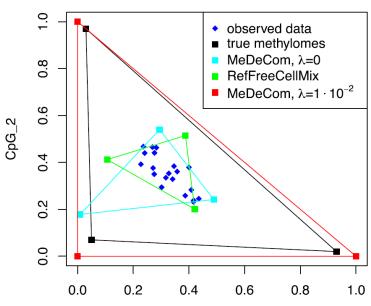
Main idea (sorry, it is simple but... ③)

Standard NMF:

 $D = T \times A + E$

$$\min_{T,A} ||D - TA||_F^2 = \sum_{i=1}^m \sum_{j=1}^n (D_{ij} - (TA)_{ij})^2$$

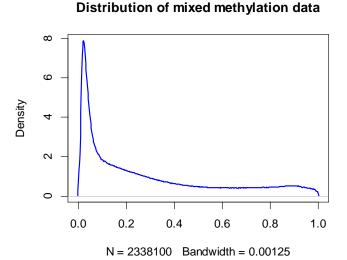
subject to
$$0 \le T_{is} \le 1 \quad \forall i, s$$
$$A_{sj} \ge 0 \quad \forall s, j$$
$$\sum_{s=1}^k A_{si} = 1 \quad \forall j.$$

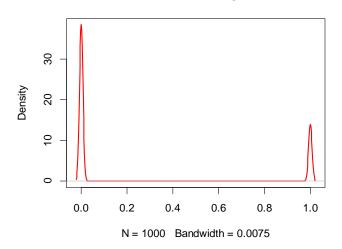

MeDeCom's regularization:

$$\min_{T,A} \|D - TA\|_F^2 + \lambda \sum_{i=1}^m \sum_{s=1}^k \omega(T_{is}), \text{ with } \omega(x) = x(1-x)$$

subject to $0 \le T_{is} \le 1 \quad \forall i, s$

$$A_{sj} \ge 0 \ \forall s, j$$
$$\sum_{s=1}^{k} A_{sj} = 1 \ \forall j,$$


S



Assumptions / Requirments

- (1) Cell population consists of finite (and small) number of sub-populations.
- (2) Each cell subpopulation have homogenous methylome profile => ∀CpG can be either 0 or 1.
- (3) Population mixtures are variable b/w samples.
- (4) Low level of technical noise and high level of biological variability.

Ideal distribution in homogeneous case

Synthetic data

lambda

0 1e-05

1e-04 0.001

0.01

0.1

10

8

9

- *k*_{sim} = 2 with two distant cell types (neutrophils and CD4+ T cells).
- $k_{sim} = 2$ with two similar cell types (neutrophils and monocytes).
- *k*_{sim} = 3 with two similar cell types and one distant from the first two (neutrophils, monocytes and CD4+ T cells).
- k_{sim} = 5 with all major blood cell types, excluding eosinophils and B cells.

Error levels out (?)

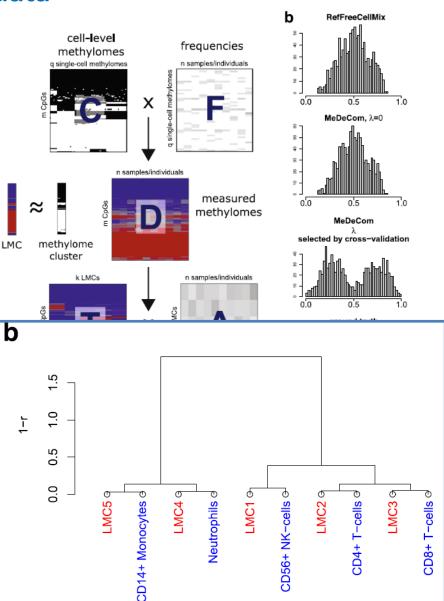
5

k

а

006

895

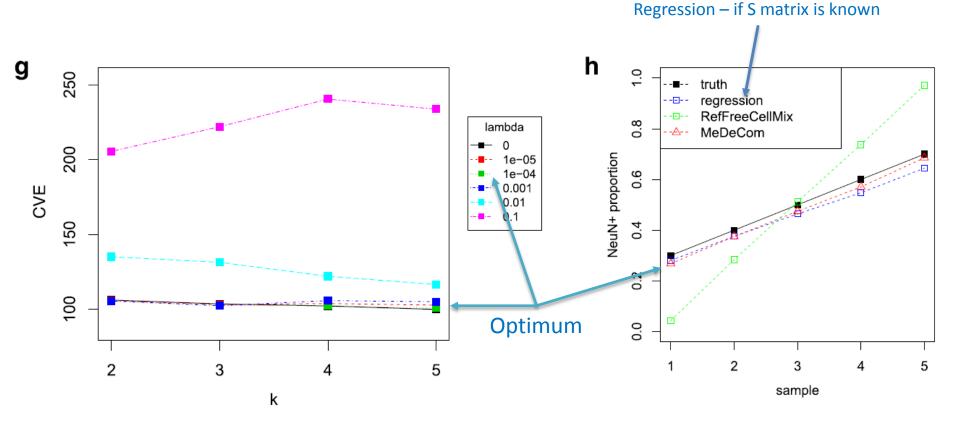

885

880

2

3

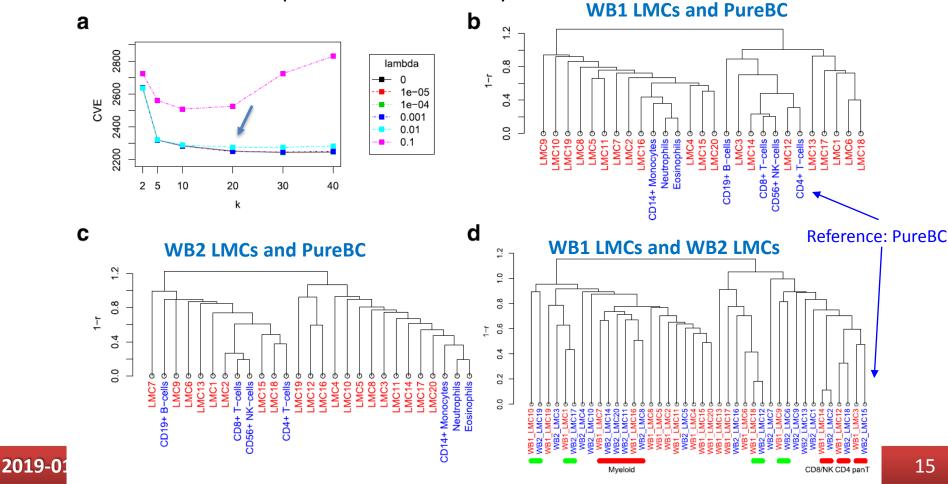
CVE 890



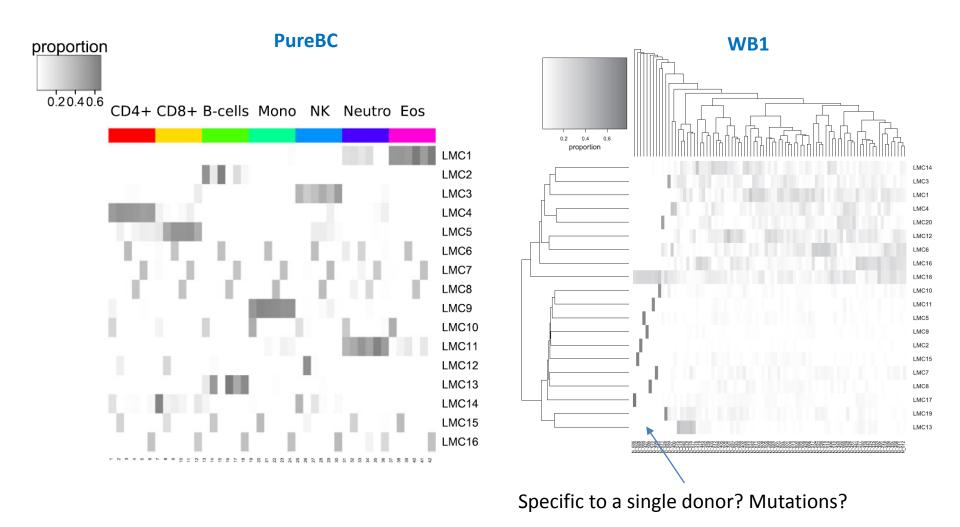
Cell mixture

Dataset ArtMixN: cell sorting into NeuN+ and NeuN- cells.

NeuN = RBFOX3 protein

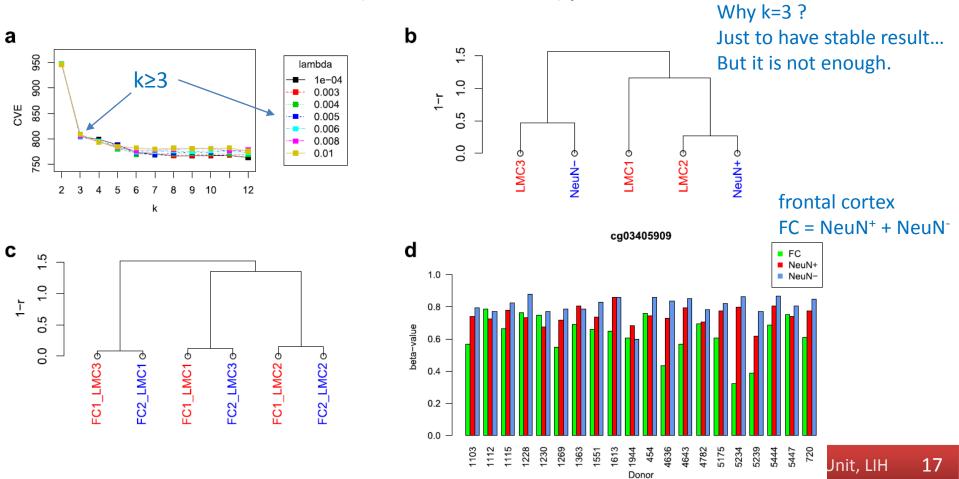


Blood samples


Whole blood samples were used.

- **PureBC** 7 MACS-purified cell types: neutro, mono, B cells ,CD4+, CD8+, NK, eosinophils
- WB1 87 rheumatoid arthritis patients
- WB2 442 cancer-free patients from EPIC Italy

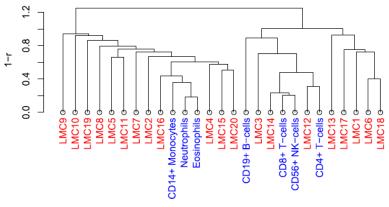
PureBC samples


2019-01-22

Brain samples

Whole blood samples were used.

- **PureN** 2x29 NeuN+/- fractions of 29 healthy controls
- FC1 2x10 frontal cortex of MDD (major depression disorder) patients
- FC1 114 frontal cortex of AD (Alzheimer's disease) patients



Conclusions

MeDeCom

- (1) provides significant advances compared to other methods;
- (2) uses with biologically relevant constrains and its LMCs are more interpretable;
- (3) acts robustly on artificial and real data;
- (4) identifies key methylation signatures;
- (5) (IMHO) Low k is more dangerous than high k.

But: Separation of specific blood cell subtypes (similar methylomes) becomes challenging

