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Let’'s generate a completely random experiment:

6 “samples” = 3 “group A” and 3 “group B”, 100 “genes”. Then run a Student t-test.

Gene

gene001
gene002
gene003
gene(004
gene005
gene006
gene007
gene008

gene(097
gene(098
gene099
genel00

Al
-0.95
-0.96
0.542
-1.71
-0.78
-0.49
0.354
-1.34

-1.26
0.783
-0.23
0.874

A2
-1.43
-1.97
1.569
-0.38
-0.79
-0.26
0.469
-0.36

-1.46
1.004
-0.66
-2.03

A3
-0.66
1.376
0.479

0.07
0.039
-0.53
0.256
0.753

-1.45
-1.03
1.171
-1.31

Bl
0.983
-0.31
-1.01
-0.26
-0.08
-1.52
0.759
0.623

-0.25
0.088
-1.61
0.067

B2
0.978
0.005
2.602

-1.1
-0.41
-1.81
0.571
-1.14

0.636
0.314
-0.72
-0.23

B3

0.89
-0.48
-1.06

1.24
-1.01
0.687
-0.91
1.678

-0.5
0.32
-0.08
-0.47

p-value
0.0009
0.8085
0.6164
0.5069
0.9807
0.5996
0.7004
0.529

0.0183
0.9845
0.2766
0.5287

Distribution of p-value (Ho: mean1 = mean2)
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p-value

Some p-values < 0.05. For 100 genes you should expect 5 genes with p-value<0.05

If you repeat this experiment, you discover another ~5 genes. But they will be different!
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Multiple Hypotheses: False Discovery Rate

False discovery rate (FDR)

FDR control is a statistical method used in multiple hypothesis testing to correct
for multiple comparisons. In a list of rejected hypotheses, FDR controls the
expected proportion of incorrectly rejected null hypotheses (type | errors).

Population Condition

Hois TRUE | Hgis FALSE | Total
Accept Ho
c —
2 | (non-significant) J i m-R
= | Reject Hy
% (significant) /’ v S R
O | Total Mo m — mq m
False Positives, /
(o error) V
FDR =E
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False Discovery Rate (FDR): Benjamini & Hochberg

Assume we need to perform m comparisons and select acceptable FDR = a = 0.05
1. Run m t-tests and sort “genes” by p-value P

2. Assign rank k : smallest p-value gets k = 1, largest gets kK =m

| k mP,
Expected value for FDR < a if P(k) < Ea » ()

V
FDR =E
V+S Theoretically, the sign should be “<”.

But for practical reasons it is replaced by “<“

<

Familywise Error Rate (FWER)

Probability of making at least one mistake

Bonferroni — simple, but too stringent, not recommended mP(k) <o

Holm-Bonferroni — a more powerful, less stringent (m+1—k)P <0
but still universal (k)
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* DEMICS

— short reminder
— challenges and achievements
— comparing to BIODICA (the tool developed in Paris & Astana)

 MelanomlICA: an application of ICA to melanoma
— correcting technical biases
— patient group prediction
— prognosis for the new patients
— biological processes in the new samples

 |deas for future
— ICA as a tool for “omics” data integration
— miRNA functional annotation based on ICA
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Fonds National de la
Luxembourg

Dr. Francisco AZUAJE Prof. Inge JONASSEN

HPC. functional  SuPervision & mentoring

enrichment

Biology of brain
tumours

Alt. splicing,
feature selection

Biology of lung
tumours

GBM+LGG ICA LUAD+LUSC

MSc student 2

Laurene PICANDET Dr. Andrei ZINOVYEV
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WP1. Improvement of w * pipelinesimplemented at HPC
* transcriptionsignals investigated

the ICA method .

15t January — 30t September

ICA results linked to clinical data

WP2. Development of M « the best classifier selected

ICA-based classifier VD1: LGG/GBM * patientclasses on validation
dataset 1 are predicted

15t October — 28t February

Challenges

» LGG and GBM are not very exciting tumors: IDH1 mutation and 1p/19q co-deletion are
the 2 main factors affecting the data.

As shown by Lorena, even random 100 genes can classify the samples (Acc = 0.94)

LGG and GBM are not so heterogeneous, compared to other tumors

Exon-exon junction counts did not improve the classification (low coverage)

YV V VY

Achievements

Our method of consensus ICA works (better than the one from collaborators so far)
We obtained nice results on SKCM (melanoma) and submitted a manuscript

In principle, 90% of WP1 and 50% of WP2 are done

Some new ideas — to be discussed

YV VYV
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Normal samples are excluded
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THCA — thyroid carcinoma

“control”

PRAD — prostate carcinoma
UVM — uveal melanoma

SARC — sarcoma (multiple tissues)

ESCA — esophageal carcinoma
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Comparing Consensus ICA Algorithms L R

consICA LIH BIODICA Institut Curie
* Using R-package fastICA e Using fastICA implemented in MATLAB
e Consensus = mean * Consensus = “centroid”
e Multiple runs excluding one sample, e Multiple runs with different initial

with different initial estimations estimations

* Multiplatform e Multiplatform
e Multicore * Multicore (?) (CPU load as for 4x cores)
* No GUI e User-friendly

Comparison on melanoma tumors (SKCM TCGA) : 477 samples, 16579 genes

Observation 1: BIODICA is ~6 times faster than consICA

conslICA -> 72 min BIODICA -> 12 min
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Comparing Consensus ICA Algorithms g =G
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st 1 T o

¢ BIODICA: more stable "
.: .
©
= = conslICA: more
) = realistic, imho ©
E
=
Mixing matrix corr;lationﬁzz consICA (2 runs) “ Mlxﬁfzi;atrlx co_rrelatlonz"z. BiODICA ‘2-"-"‘5) -
[
< ~ .. BIODICA: extremely
= |” correlated weight
© = vl
matrix!
consICA: more
realistic ©
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Comparing Consensus ICA Algorithms k)
S-matrix
Metagene correlation”2: consICA-BIODICA » The strongest signals are recovered by both
[mmll||ﬂmlﬁﬂ[FWﬁr algorithms
= e > The discrepancy for mixing matrix of
= o BIODICA is under investigation by Paris and
ﬁ 0.2

Astana teams now

wtllli

> =>we aim at our conslCA method for the
moment.

consICA
=il

https://gitlab.com/biomodlih/consica

I
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MelanomICA: Method o | ooheum
ICA to study new patients

Trainin.g gene Biological
expression data knowledge:
(TCGA) bio-processes and
- ~ ‘ sample composition
New gene
expression data Potential
(clinical research » ICA » diagnostics:
samples) :o: sample classes
7 machine
learning Potential
prognostics:
survival markers

Preprint is available at
https://www.biorxiv.org/content/early/2018/08/20/395145
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PCA | ICA
Tralnln_g gene Biological A
express|on data knowledge- ) ) female patients male patients
" » pals
(TCGA) bio-processes &7 Pzbu s
.. and sample 2 &1 pabu g T
New gene composition 8 g1 o el 3° | L "
expression » ICA » : 21 - 2 g e 3
data Diagnostics: 5 1 ﬁ* 7 %ﬁ} :
(patients) o sample classes © g P B TRt A
machine 2 g O 4 * :
learning Prognostics: Z o W e AW 0 = d @ @
Sun"val markers % PC1, 25% variability RIC3: gender-related
(7]
<Zt C D
RNA-seq + miRNA %‘ 8 ks . C
NHEM & . g 3
Reference data: 472 samples = 2,
Validation data: 44 samples Zaf 3
Investigation data: 5 samples g . \ 5°
] .
0 50 100 150 200 B -0.1 O.‘O 0.1 0.2 h
PC1, 28% variability MIC1: linked to patient survival
Gender: o female, = male Sample type: primary tumour
. o= metastatic
Conclusion 1: o new samples

Consensus ICA can correct technical biases between platforms
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Hazard score

Accuracy: |Actual tumour cluster:
90.9% immune keratin | MITF-low k
immune 158 4 8 e E . R2M*.
keratin 9 98 6 v
MITF-low 3 0 45 =
y LHR for significant components
Accuracy: |Actual sample type: | 0 fornon—significant components
91.3% metastatic| primary
metastatic 364 38 ) )
- 44 metastatic patients
primary 3 67 Training / Reference set Validation set
Log-rank test p-value= 5.6e-16 Log-rank test p-value= 1.3e-03
LHR= 0.49 (CI = 0.37, 0.61) LHR= 0.87 (Cl = 0.28, 1.45)
E 06 % 06
E 0.4 "_é 0.4

S 10 15 20 25 30

Survival time (years)

= HS>median
5 10 15

Survival time (years)

Conclusion 2:
Consensus ICA can be used to predict cancer subtype and patient survival

2018-09-04
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Cluster  Component Risk (p-value) Meaning P2PM P4PM P6PM P4NS NHEM
RIC2 decreased (1.8e-4) B cells
RIC25 decreased (2.8e-7) T cells
RIC27 no effect B cells
I mmune Immune RIC28 no effect response to wounding
RIC37 no effect IFN signalling pathway
RIC57 no effect monocytes
MIC20 decreased (1.2e-4) T cells, chrlg32.2
RIC13 no effect cells of stroma
St roma I an d Stromal and RIC49 no effect endothelial cells
. . angiogenic MIC22 no effect miR-379/miR-410 cluster, chr14g32.2,14932.31
d ng I Oge nic MIC25 no effect potentially related to stromal cells; clusters:
chrlg24.3, 532, 17p13.1, 21q21.1
RIC5 increased (5.8e-3) epidermis development and keratinisation
RIC7 increased (8.9e-6) epidermis development and keratinisation
Sk| nre I ated Skin-related RIC19 increased (4.0e-2) epidermis development and keratinisation
RIC31 increased (2.2e-2) epidermis development and keratinisation
MIC9 increased (2.9e-2) skin-specific miRNAs
RIC4 increased (5.4e-3) melanin biosynthesis
M ela nocyteS Melanocyte RIC16 decreased (5.1e-4) melanosomes (negative gene list) 0.68 0.77 054 0.75 0.39
S MIC11 no effect potential regulators of malignant cells, chrxq27.3 0.21 0.62 - 0.48
MIC14 decreased (1.5e-2) potential regulators of melanocytes, chrXg26.3 0.29 0.67 0.29 0.38
RIC55 increased (3.0e-2) cell cycle
Othe r Other RIC6 decreased (5.5e-3) potentially linked to neuron differentiation
MIC1 increased (9.4e-4) regulators of EMT

Conclusion 3:
Consensus ICA can be used to get biological knowledge about the new samples
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» hsa-miR-1247-5p
Correlation of weights: ‘ hsa-miR-142-3p
MRNAIRNA peamiR 145b.3
MIC20 P
2t R and R camponents RIC27 hsa-miR-150-5p
\ hsa-miR-155-3p
hsa-miR-155-5p
RIC79 hsa-miR-1976
hsa-miR-223-3p
Survival RIC25 Immune o0 hsa-miR-223-5p
Signal hsa-miR-29¢c-3p
hsa-miR-342-3p
hsa-miR-342-5p
RIC74 RIC2 RIC37 hsa-miR-3614-3p
hsa-miR-511-5p
hsa-miR-642a-5p
hsa-miR-146b-5p
ez hsa-miR-766-3p
hsa-miR-625-3p
hsa-miR-653-5p

RIC57

RIC13

MIC25

RIC49

Conclusion 4:
Consensus ICA can be used to integrate the data and assign functions to miRNAs
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ECCB poster: Multi-omics data integration using parallel
consensus independent component analysis

Inferred targets Enrichment
“Classical”
sooronh:  _miRNAs —»(_ Genes > Functions

Correlated miR/genes

P[enrichment}— Gene

sets
Gene

Proposed expr. ﬁ S; | X M,

approach: data

Functional
annotation
of miRNA

e

correlation

miRNA
expr.
data
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TCGA, paired mRNA / miRNA data: 8648 samples, 20531 genes, 2587 miRNAs
After filtering uninformative: 19824 genes, 791 miRNAs

Gene filtering: 19824 kept of 20531

ICA: 100 runs, 100 components

[{e]
<
2 < R2 gene-miR
n o 1
c
S _
N [T it
° K i ol
o | ‘ i
© T T T T T ot
0 5 10 15 20 § o : iz :
N = 177552088 Bandwidth = 0.08205
MiRNA filtering: 791 kept of 2587
[ee]
<
2 _
B
g < |
o o
o |
© T T T
0 5 10 15 20
N = 22372376 Bandwidth = 0.07289

Observation: RAM is limiting factor

2018-09-04 LabMeeting, Proteomics and Genomics, LIH, 2018



I_ LUXEMBOURG
INSTITUTE

ICA-based Data Integration o | oreeas

Correlation properties

R2 biw features R2 b/w components
o
c.o I
gene-gene o _| gene-gene
miRNA-mIiRNA N miRNA-mIiRNA
3 - gene-miRNA gene-miRNA
----- random ----- random
=
o | ]
<
= =
2 8 -1 2 o |
@ I @ o
a ! a
o ||
™~ i
| o
o |
o - :t____f __________ o _Ji. ________ f?:':*:-: ______
| | | | | | | | | | | |
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
N = 100000 Bandwidth = 0.002006 N = 10000 Bandwidth = 0.003431

Gene-miR shows lower correlation, as sample effect is removed. Not seen in ICA results
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Networks of the ICA components

Networks composed of correlated miRNA (¢ MIC) and mRNA components (@ RIC) for two correlation
cut-offs. Edge colour represents correlation (— positive, — negative). Size of a node represents relative
number of contributing genes and miRNAs in it.
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ICA-based Data Integration LA
GO annotation
A Correlating features B Correlating components C
S e S = = ] hsa-miR-155-5p|MIMAT0000646 by ICA: 2368
lef ’ i I 4 e Sovnrs Bocor® F% @™ 0 WS o0 g
" ! I & 1815
y ‘ i s %z & k
il L B 553
[ g 2 J;’,
ik, | B
, . N i . ? ‘ ’
s 203 miRNAs E 689 miRNAs R
€ a n notate d = :, ) : I a n nO ta t e d N SlEOR By comsiatin by Correlation: 587
‘ ) I25
! é 5
! 0
GO:BP tems GO:BP tems

Results of miRNA annotation using a direct approach (A) and proposed method (B). Heatmap
colour represents —log,,(FDR) of the hypergeometric test used in enrichment analysis. (C)
Scatter of —log,,(FDR) for miR-155-5p and comparison of enriched GO terms (FDR<0.001).
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DEMICS
» Finalize LGG/GBM part for the annual FNR report

» Optional: try exon level data instead of junctions?

» Work on WP2: prediction / classification task. Include a new cohort (Chinese)

> Hire a MSc student for 2019. But @ can be an issue (only 400-500 per month).

Data Integration

» Can we aim at a publication: ICA-based miRNA function prediction ?
- It could be a DB or software note

» We need to prove that our predictions are relevant and are not composed of false hits
- How? Literature search?

» In addition to gene-miR correlation, we should consider miR-target approach. This is
the most accepted method (however | was not impressed, when | tried)
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I_ LUXEMBOURG
INSTITUTE

ConCIUSions 1 OF HEALTH

sssssssssssssssssssss

* We tested our implementation of consensus ICA, that
decomposes large bulk data set into meaningful signals

* The hypothesis of “junctions” is not supported. However
other hypotheses of DEMICS are.

* New samples are properly mapped in IC-space

* The method allows classifying and scoring new patients =>
can be used for diagnostics and building prognosis.

* The method allows linking miRNA to mRNA and thus
predicting miRNA functions
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