

An Update on DEMICS Project and Future Research Plans

**Petr Nazarov** 

petr.nazarov@lih.lu

2018-09-04

#### Let's generate a completely random experiment:

6 "samples" = 3 "group A" and 3 "group B", 100 "genes". Then run a Student t-test.



Some p-values < 0.05. For 100 genes you should expect 5 genes with p-value<0.05

If you repeat this experiment, you discover another ~5 genes. But they will be different!



### Multiple Hypotheses: False Discovery Rate

False discovery rate (FDR)

FDR control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors).



# **Concept: Multiple Hypothesis Testing**



### False Discovery Rate (FDR): Benjamini & Hochberg

Assume we need to perform *m* comparisons and select acceptable FDR =  $\alpha$  = 0.05

- 1. Run *m* t-tests and sort "genes" by p-value *P*
- 2. Assign rank **k** : smallest p-value gets k = 1, largest gets k = m

**Expected** value for FDR <  $\alpha$  if  $P_{(k)} < \frac{k}{m} \alpha$ 

$$FDR = E\left(\frac{V}{V+S}\right)$$

Theoretically, the sign should be "≤". But for practical reasons it is replaced by "<"

 $mP_{(k)}$ 

### Familywise Error Rate (FWER)

Probability of making at least one mistake

Bonferroni – simple, but too stringent, not recommended

Holm-Bonferroni – a more powerful, less stringent but still universal

$$mP_{(k)} < \alpha$$

$$(m+1-k)P_{(k)} < \alpha$$

# **Lab-meeting Outline**



### • **DEMICS**

- short reminder
- challenges and achievements
- comparing to BIODICA (the tool developed in Paris & Astana)

### • MelanomICA: an application of ICA to melanoma

- correcting technical biases
- patient group prediction
- prognosis for the new patients
- biological processes in the new samples

### Ideas for future

- ICA as a tool for "omics" data integration
- miRNA functional annotation based on ICA

# **DEMICS Project**





# Plans & Reality ©





#### Challenges

- LGG and GBM are not very exciting tumors: IDH1 mutation and 1p/19q co-deletion are the 2 main factors affecting the data.
- > As shown by Lorena, even random 100 genes can classify the samples (Acc  $\approx 0.94$ )
- LGG and GBM are not so heterogeneous, compared to other tumors
- > Exon-exon junction counts did not improve the classification (low coverage)

#### Achievements

- > Our method of consensus ICA works (better than the one from collaborators so far)
- > We obtained nice results on SKCM (melanoma) and submitted a manuscript
- ➢ In principle, 90% of WP1 and 50% of WP2 are **done**
- Some **new ideas** to be discussed



# **Heterogeneity in Cancers**

#### Correlation b/w samples

#### Normal samples are excluded





#### consICA

LIH

- Using R-package *fastICA*
- Consensus = mean
- Multiple runs excluding one sample, with different initial estimations
- Multiplatform
- Multicore
- No GUI

#### BIODICA Institut Curie

- Using *fastICA* implemented in MATLAB
- Consensus = "centroid"
- Multiple runs with different initial estimations
- Multiplatform
- Multicore (?) (CPU load as for 4x cores)
- User-friendly

Comparison on melanoma tumors (SKCM TCGA) : 477 samples, 16579 genes

**Observation 1: BIODICA** is ~6 times faster than consICA

consICA -> 72 min

BIODICA -> 12 min

# **Comparing Consensus ICA Algorithms**





# **Comparing Consensus ICA Algorithms**



### S-matrix



- The strongest signals are recovered by both algorithms
- The discrepancy for mixing matrix of BIODICA is under investigation by Paris and Astana teams now
- > => we aim at our consICA method for the moment.

https://gitlab.com/biomodlih/consica



## **MelanomICA: Method**

### ICA to study new patients



#### Preprint is available at

https://www.biorxiv.org/content/early/2018/08/20/395145

## **MelanomICA**





**RNA-seq + miRNA** Reference data: 472 samples Validation data: 44 samples Investigation data: 5 samples



### Conclusion 1:

Consensus ICA can correct technical biases between platforms

2018-09-04

Sample type:

e primary tumour primary tumour primary tumour

new samples

Gender: • female. • male

### **MelanomICA**



| Accuracy:    | Actual tumour cluster: |         |          |  |  |  |  |
|--------------|------------------------|---------|----------|--|--|--|--|
| <i>90.9%</i> | immune                 | keratin | MITF-low |  |  |  |  |
| immune       | 158                    | 4       | 8        |  |  |  |  |
| keratin      | 9                      | 98      | 6        |  |  |  |  |
| MITF-low     | 3                      | 0       | 45       |  |  |  |  |

| Accuracy:    | Actual sample type: |         |  |  |
|--------------|---------------------|---------|--|--|
| <b>91.3%</b> | metastatic          | primary |  |  |
| metastatic   | 364                 | 38      |  |  |
| primary      | 3                   | 67      |  |  |

#### Hazard score

$$HS_j = \sum_{i=1}^k H_i R_i^2 M_{i,j}^*$$

 $H_i = \begin{cases} LHR & for significant components \\ 0 & for non-significant components \end{cases}$ 



#### Conclusion 2:

Consensus ICA can be used to predict cancer subtype and patient survival

Survival probability

# **MelanomICA: Results**



|              | Cluster         | Component | Risk (p-value)     | Meaning                                                                              | P2PM | P4PM | P6PM | P4NS | NHEM |
|--------------|-----------------|-----------|--------------------|--------------------------------------------------------------------------------------|------|------|------|------|------|
| Immune       | Immune          | RIC2      | decreased (1.8e-4) | B cells                                                                              | 0.11 | 0.07 | 0.02 | 0.19 | 0.01 |
|              |                 | RIC25     | decreased (2.8e-7) | T cells                                                                              | 0.26 | 0.06 | 0.24 | 0.18 | 0.00 |
|              |                 | RIC27     | no effect          | B cells                                                                              | 0.80 | 0.37 | 0.31 | 0.80 | 0.00 |
|              |                 | RIC28     | no effect          | response to wounding                                                                 | 0.34 | 0.57 | 0.78 | 0.43 | 0.84 |
|              |                 | RIC37     | no effect          | IFN signalling pathway                                                               | 0.97 | 0.66 | 0.99 | 0.90 | 1.00 |
|              |                 | RIC57     | no effect          | monocytes                                                                            | 0.00 | 0.25 | 0.24 | 0.02 | 0.00 |
|              |                 | MIC20     | decreased (1.2e-4) | T cells, chr1q32.2                                                                   | 0.14 | 0.08 | 0.37 | 0.02 | 0.19 |
|              |                 | RIC13     | no effect          | cells of stroma                                                                      | 0.81 | 0.40 | 0.50 | 0.86 | 0.03 |
| Stromal and  | Stromal and     | RIC49     | no effect          | endothelial cells                                                                    | 0.73 | 0.12 | 0.29 | 0.84 | 0.00 |
| angiogenic   | angiogenic      | MIC22     | no effect          | miR-379/miR-410 cluster, chr14q32.2,14q32.31                                         | 0.29 | 0.20 | 0.27 | 0.38 | 0.16 |
|              |                 | MIC25     | no effect          | potentially related to stromal cells; clusters:<br>chr1q24.3, 5q32, 17p13.1, 21q21.1 | 0.97 | 0.85 | 0.76 | 0.80 | 0.26 |
| Skin related | Skin-related    | RIC5      | increased (5.8e-3) | epidermis development and keratinisation                                             | 0.92 | 0.93 | 0.96 | 0.92 | 0.87 |
|              |                 | RIC7      | increased (8.9e-6) | epidermis development and keratinisation                                             | 0.94 | 0.93 | 0.93 | 0.95 | 0.57 |
|              |                 | RIC19     | increased (4.0e-2) | epidermis development and keratinisation                                             | 1.00 | 0.62 | 0.22 | 1.00 | 0.93 |
|              |                 | RIC31     | increased (2.2e-2) | epidermis development and keratinisation                                             | 0.98 | 0.85 | 0.89 | 0.99 | 0.28 |
|              |                 | MIC9      | increased (2.9e-2) | skin-specific miRNAs                                                                 | 0.95 | 0.88 | 0.87 | 0.91 | 0.83 |
| Melanocytes  | Melanocyte<br>s | RIC4      | increased (5.4e-3) | melanin biosynthesis                                                                 | 0.62 | 0.77 | 1.00 | 0.21 | 0.96 |
|              |                 | RIC16     | decreased (5.1e-4) | melanosomes (negative gene list)                                                     | 0.68 | 0.77 | 0.54 | 0.75 | 0.39 |
|              |                 | MIC11     | no effect          | potential regulators of malignant cells, chrXq27.3                                   | 0.21 | 0.96 | 0.62 | 0.13 | 0.48 |
|              |                 | MIC14     | decreased (1.5e-2) | potential regulators of melanocytes, chrXq26.3                                       | 0.01 | 0.29 | 0.67 | 0.29 | 0.38 |
| Other        | Other           | RIC55     | increased (3.0e-2) | cell cycle                                                                           | 0.48 | 0.46 | 0.88 | 0.00 | 0.53 |
|              |                 | RIC6      | decreased (5.5e-3) | potentially linked to neuron differentiation                                         | 0.43 | 0.73 | 0.59 | 0.46 | 0.01 |
|              |                 | MIC1      | increased (9.4e-4) | regulators of EMT                                                                    | 0.11 | 0.07 | 0.02 | 0.19 | 0.01 |

### Conclusion 3:

Consensus ICA can be used to get biological knowledge about the new samples

### **MelanomICA: Results**





#### Conclusion 4:

Consensus ICA can be used to integrate the data and assign functions to miRNAs





LUXEMBOURG

TCGA, paired mRNA / miRNA data: 8648 samples, 20531 genes, 2587 miRNAs After filtering uninformative: 19824 genes, 791 miRNAs

Gene filtering: 19824 kept of 20531



MiRNA filtering: 791 kept of 2587



Observation: RAM is limiting factor

2018-09-04



ICA: 100 runs, 100 components

LUXEMBOURG INSTITUTE



### **Correlation properties**



Gene-miR shows lower correlation, as sample effect is removed. Not seen in ICA results



### **Networks of the ICA components**



Networks composed of correlated miRNA (• MIC) and mRNA components (• RIC) for two correlation cut-offs. Edge colour represents correlation (– positive, – negative). Size of a node represents relative number of contributing genes and miRNAs in it.



#### **GO** annotation



Results of miRNA annotation using a direct approach (A) and proposed method (B). Heatmap colour represents  $-\log_{10}(FDR)$  of the hypergeometric test used in enrichment analysis. (C) Scatter of  $-\log_{10}(FDR)$  for miR-155-5p and comparison of enriched GO terms (FDR<0.001).

### **Future Plans**



### DEMICS

- Finalize LGG/GBM part for the annual FNR report
- Optional: try exon level data instead of junctions?
- Work on WP2: prediction / classification task. Include a new cohort (Chinese)
- Hire a MSc student for 2019. But s can be an issue (only 400-500 per month).

### **Data Integration**

- > Can we aim at a publication: *ICA-based miRNA function prediction* ?
  - It could be a DB or software note
- We need to prove that our predictions are relevant and are not composed of false hits
  - How? Literature search?
- In addition to gene-miR correlation, we should consider miR-target approach. This is the most accepted method (however I was not impressed, when I tried)

# Conclusions



- We tested our implementation of consensus ICA, that decomposes large bulk data set into meaningful signals
- The hypothesis of "junctions" is not supported. However other hypotheses of DEMICS are.
- New samples are properly mapped in IC-space
- The method allows classifying and scoring new patients => can be used for diagnostics and building prognosis.
- The method allows linking miRNA to mRNA and thus predicting miRNA functions

### **Acknowledgements**



### Proteome and Genome Research Unit, Luxembourg Institute of Health (LIH)

Tony KAOMA Arnaud MULLER and other BIOMOD members Dr. Francisco AZUAJE Dr. Gunnar DITTMAR





### LSRU, University of Luxembourg

Dr. Anke WIENECKE **Dr. Stephanie KREIS** 



Institute Curie, France Urszula Czerwinska Dr. Andrei ZINOVYEV



This work was supported by Luxembourg National Research Fund (C17/BM/11664971/DEMICS)



Fonds National de la Recherche Luxembourg