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DeepCpG: accurate prediction of single-cell ® e
DNA methylation states using deep
earning

Christof Angermueller'”, Heather J. Lee®®, Wolf Reik** and Oliver Stegle" ®

Abstract

Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However,
current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation
states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep
neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data
from five cell types generated using alternative sequencing protocols. DeepCpG yields substantially more accurate
predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby
providing insights into how sequence composition affects methylation variability.

Keywords: Deep leaming, Artificial neural network, Machine leaming, Single-cell genomics, DNA methylation, Epigenetics
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Main Figure: the Idea
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Fig. 1 DeepCpG model training and applications. a Sparse single-cell CpG profiles as obtained from scBS-seq [5] or scRRBS-seq [6-8]. Methylated
(pG sites are denoted by ones, un-methylated CpG sites by zeros, and question marks denote CpG sites with unknown methylation state (missing
data). b Modular architecture of DeepCpG. The DNA module consists of two convolutional and pooling layers to identify predictive motifs from
the local sequence context and one fully connected layer to model motif interactions. The CpG module scans the CpG neighbourhood of
multiple cells (rows in b) using a bidirectional gated recurrent network (GRU) [36], yielding compressed features in a vector of constant size. The
Joint module leams interactions between higher-level features derived from the DNA and CpG modules to predict methylation states in all cells.
¢, d The trained DeepCpG model can be used for different downstream analyses, including genome-wide imputation of missing CpG sites (¢)
and the discovery of DNA sequence motifs that are associated with DNA methylation levels or cell-to-cell variability (d)
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There is no fun discussing the paper without knowing the instrument used
for data processing and prediction.

Therefore:
@ Basics of artificial neural networks (ANN)
- artificial neuron
- feed forward network — FFN (a.k.a multi-layer perceptron MLP)

? Deep neural networks (DNN) and its application in the paper:
- convolutional networks (CNN)

- recurrent networks (GRN)

¥ Results & Discussion
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1999: lack of
computation power,
lack of training data,
gradient decay
problem for deep nets.

1970, Minsky,
Papert: Single-layer
networks are limited!

1957 Frank Rosenblatt :
Perceptron — a single neuron ©

in ferro

Artificial Neural Networks

History: Double “Gartner’s Hype Cycle” ©
Neural Network History

Expectations
or media hype

xxxxxx

Trough of Dis ionment

‘Technology Trigger

950-70 1980 1990 2000 2006 2009
DNN DNN
(industry)

1980s: The method to train multilayer
networks (error backpropagation)

time

New methods,

resources and

BIG industrial
players

Modified from P. O. Glauner https://arxiv.org/abs/1504.06825 5
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Artificial Neuron — a Simple Processing Unit

Multiple inputs
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Feed Forward Network (FFN), a.k.a. Multi-layer Perceptron (MLP)
Forward propagation of information

In classification the
output is considered
as probability of a
class (with softmax)

INPUTS

OUTPUTS

4 layers
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Convolutional Networks
How to distinguish cats from cancers with FFN ?

Inputs: Layer 1:
256 x 256 x 3 200 k x 100

256 x 256 pixels, 3 color channels =200 k Not feasible !

Why not to use what was already invented by evolution?
Visual cortex:

- multi layer organization

- links only between spatially close
neurons & receptors

- each layer reduces the size =>
extract features

https://www.pinterest.com/pin @ Pyramidal cels

/203647214370581827/ 8 Hloares https://www.intechopen.com/books/visual-cortex-current-status-and-

perspectives/adaptation-and-neuronal-network-in-visual-cortex
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Convolutional Networks for Images

256 x 256 x 3 256 x 256 x L1

128 x 128 x L1 64 x 64 x L2 32x32xL3

Classifier:
FFN

I 2. Pool d ] 7 9 9

1. Convolution: . Pooling: reducin

i ith di => dimenfionality ° @ﬂ @ﬂ gg
PP

(often: max pool)

_ L1 neurons
8x8 = 64 1 218 5
] 3 4]2 6 E> 4| 8
9 1|5 4 9 7
® 8|7 O
64 x L1 weights
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Convolutional Networks for Sequences

Let’s consider a simpler situation: genomic sequence instead of cat photos ©

Numbers are taken from the paper
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Recursive Networks: a Simplified Concept

How about predicting or processing series of data? Speech, music, sequences, etc.

To combine current inputs and memory management:
Long Short Term Memory - LSTM
NNy

b ®

\ 4

It is as “simple” as it sounds... ©

o
s
ks
2 N
Features: Y Y &S
e each neuron keeps in A %[{;’ ® A
memory its state; —
* can clear memory; | |
 can update memory; &) () nput &)
e outputis based on inputs
and memory;
* robust in case of missing
values

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Convolutional Networks for CpG Prediction

In paper they used FFN followed by simplified LSTM: Gated Recurrent Unit (GRU)

2t = U(Wz : [htflzxt})
re =a Wy [hi—1,3])
ilt = tdnh(W . [Tt * ht,hl't])

This part was not very clear from the paper and

needed investigation
he = (1 —2z) % hyq + 2k By

100 x N 256 GRU | 512 output values
cel FFN: N
cell X 256
] 256 neurons GRU > Y
Methylation [ Xm, L Y,
S5 90 © o o | ar ooo ooo
states around xm, ) @///) . Vs
the current a7 y///
4_) ReI_U ee o8 eee eee sse sees e
e
g .0 o)
Normalized Xd1 R RelU >/ / _
distance to Xdz g
the current ReLU
xd, I;_J_ CpG sites Ys11
Ys12

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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CpG

Bidirectional GRU
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.
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328 k weights!
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Deep Networks
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Estimated number of fitted
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Architecture Overview
CpG quule o Training:chr. 1, 3,5, 7,9, 11
Learns correlations within Validation (aka “control”): chr. 13-19

and between cells.

___________________________________

Bidirectional GRU

| 0010 |—>
| 0101 I—P

Testing: chr. 2,4, 6, 8, 10, 12

Y

2 4

___________________

[ ] o) | Joint module
T cpGmode . Combines observed neighboring
" B ] O . methylations and sequence-based
i ' . predictions into final prediction.
i ot modut ]
DNA module Outcomes:
Accounts for sequence - imputation of missing methylation values

motifs that can predict
the methylation state

- discovering DNA motifs associated with
methylation states
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Imputation of Methylation States

18 serum-cultured mouse embryonic stem cells (“Serum”): CpG coverage = 17%, scBS-seq
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Imputation of Methylation States

Other cells:
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Fig. 2 DeepCpG accurately predicts single-cell CpG methylation states. a Genome-wide prediction performance for imputing CpG sites in 18 serum-grown
mouse embryonic stem cells (mESCs) profiled using scBS-seq [5]. Performance is measured by the area under the receiver-operating characteristic curve
(AUQ), using holdout validation. Considered were DeepCpG and random forest classifiers trained either using DNA sequence and CpG features (RF) or
using additional annotations from corresponding cell types (RF Zhang [12]). Additionally, two baseline methods were considered, which estimate
methylation states by averaging observed methylation states, either across consecutive 3-kbp regions within individual cells (WinAvg [5]) or across cells
at a single CpG site (CpGAvg). b Performance breakdown of DeepCpG and RF, comparing the full models to models trained using either only
methylation features (DeepCpG CpG, RF CpG) or only DNA features (DeepCpG DNA, RF DNA). ¢ AUC of the methods as in (a) stratified by genomic contexts
with increasing CpG coverage across cells. Trend lines were fit using local polynomial regression (LOESS [72]); shaded areas denote 95%
confidence intervals. d AUC for alternative sequence contexts with All corresponding to genome-wide performance as in (a). e Genome-wide prediction
performance on 12 2i-grown mESCs profiled using scBS-seq [5], as well as three cell types profiled using scRRBS-seq [8], including 25 human

hepatocellular carcinoma cells (HCO), six HepG2 cells, and six additional mESCs. CGI CpG island, LMR low-methylated region, T5S transcription start site
10
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Effects of DNA Motifs
Q1. Discover methyl-associated motifs
Q2. Investigate the effect of SN mutation
1a. Motifs can be found from 1° 2. Linking changes in sequence to prediction

layer of DNA module

pmm——————— 7"--33-\- --------------- N
f 1 . Fully

connected

s, — sequence, d — nucleotide,
i -position of change

S :Aj}n(s”)*

[ i
| |
| .
: i €nid As. - (I_Sm'd)
! ] nid
l :
i i Deep Inside Convolutional Networks: Visualising
| SR Sy Pameae ] Image Classification Models and Saliency Maps
First convolution layer:
‘e ” . Karen Simonyan.‘ Andrea Vedaldi ) Andrew Zisserman
128 neurons or “filters”, with e o Iy S
weights that prioritize some motifs.
=> 128 motifs
1b. Motif activity 1c. Motif influence on methylation

Pearson correlation between
activity and predicted
methylation is a measure of
influence r, = cor(a, sy, 17

Averaged output of each
neuron/filter over all scanned
position is activity a
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Methyl . Methyl 1 PCA of Motifs Activity
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Effect of Mutations on Methylation
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Fig. 4 Effect of single-nuclectide mutations on DNA methylation. Average genome-wide effect of single-nucleotide mutations on DNA methylation
estimated using DeepCpG, depending on the distance to the CpG site and genomic context. CGI CpG island, IMA low-methylated region,
TSS transcription start site

1. Mutations in CG-dense regions tended to have smaller
effects
2. Mutation in low-methylated region has the strongest
effect. But not discussed. Artefact? 20
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Motifs and Variability between Cells
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Fig. 5 Prediction of methylation variability from local DNA sequence. a Difference of motif effect on cell-to-cell variability and methylation levels
for different genomic contexts. Motifs assodated with increased cell-to-cell variability are highlighted in brown; motifs that are primarily associated with Jo ® e .
changes in methylation level are shown in purple. b Genome-wide correlation coefficients between motif activity and DNA sequence conservation H mm.. IS n t |t p ure Stat | St ICS
(left), as well as cell-to-cell variability (right). ¢ Sequence logos for selected matifs identified in (@), which are highlighted with coloured text in (b).

d Boxplots of the predicted and the observed cell-to-cell variability for different genomic contexts on held-out test chromasomes (leff), alongside Of Bl nomia | d Istri b ution ? 21
Pearson and Kendall correlation coefficients within contexts (right). CGl CpG island, LMR low-methylated region, 755 transcription start site
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And Comments
1. DeepCpG accurately predicts missing values of methylation states

2. It detects sequence motifs that are associated with :
- changes in methylation levels
- cell-to-cell variability.

3. DeepCpG potentially can help studying methylation variability that is
independent of DNA sequence effects (not in the paper, just stated)

4. Future: integrate multiple-omics data profiled in the same cells using
parallel-profiling methods

In general — | liked the paper. But it is quite methodologically complex. Some points need
to be tried manually in order to be understood. Selection of some hyperparameters stay
unclear for me... except the preference of authors to powers of 2 (64, 128,256,512) ©
Only one discrepacy was found — Fig 1 (CoG module) does not fit to the M&M text.

To discuss: Can we use something similar for our SC RAN-seq data?
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Appendix |

Single-cell genome-wide  S¢BS-5ed

bisulfite sequencing for
assessing epigenetic
heterogeneity

Sébastien A Smallwood!-6, Heather ] Leel-2:6,
Christof Angermueller?, Felix Krueger?,

Heba Saadeh!, Julian Peat!, Simon R Andrews?*,
Oliver Stegle?, Wolf Reik!->>7 & Gavin Kelsey!>7

Step 1 Step 2 Step 3
lysis and BS oligo 1 tagging oligo 2 tagging
oTo 20 and PCR
og.-’.oq:‘?i 5. 3
Single-cell l . 5 3
isolation o I —
|><4 9rC [ I(N)9—5
. 5 "
Lysis l grEr—— -.5.3 g _______________ —3
5
BS Exoland PCR and
. capture . .
conversion l , . indexing
. .5 —3
pSe——", I3, =
s I— te——2 3 =
b ,
Cell lysis Bisulfite conversion _ 5
(Step 1) (Steps 2-5) 5

Genome-wide base-resolution mapping of DNA
methylation in single cells using single-cell
bisulfite sequencing (scBS-seq)

Stephen J Clark!"7, Sébastien A Smallwood!-%7, Heather ] Lee!:2:67, Felix Krueger?, Wolf Reik!:24:58 &
Gavin Kelsey!#

Library amplification
and purification

-

|

Library QC
(Steps 44 and 45)

(Steps 33—43)

3 Preamp oligo tagging N
3 and pre-amplification (N) g
3 x4
Steps 6-12
5 (Step: ) 5 o »
g mmEm———— 5
~, 5
Exonuclease | and
SPRI purification
(Steps 13-21)
5 3
............. N)
3 (N)e
\5,
5 3 Oligo Il tagging I —
- ===(N) - —
6~~5' (Steps 22-32)
—————————

—
—————
S ——

lllumina sequencing
(Steps 46 and 47)

Data processing
(Steps 48-52)

Figure 1 | Overview of scBS-seq library preparation protocol. Single-cells are lysed and the DNA bisulfite is converted. Random priming and extension are used to
preamplify and incorporate forward and, subsequently, reverse adaptor sequences. Finally, PCR is used to amplify and index the libraries before they are sequenced.
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PROTOCOL | SCRRBS-Seq

Profiling DNA methylome landscape:
cells with single-cell reduced-repres @ ) i ? o
bisulfite sequencing cickin & simate cel e TETT (stepsio-12)
Hongshan Guo!, Ping Zhu!-2>, Fan Guo!, Xianlong Li!, Xinglong Wu'!-2, Xiaoy (Steps 1-9) l lr
Fuchou Tangl?# l \;_E e / En:(—j;e;girrfl?;&irl]i ng
< 1 TN (Stepsl‘l?z—m}

N—u U /
Single-tube reaction Bisulfite conversion
(Steps 20-23)

| !

PCR amplification
(Steps 24—-41)

|

High-throughput
sequencing
(Steps 42—-44)

C

Figure 1 | Flowchart of the experimental procedures of the scRRBS
technique. Notably, we integrated cell lysis, MspI digestion, end repair/dA
tailing, adapter ligation and bisulfite treatment into a single-tube reaction
to avoid unnecessary DNA loss.




