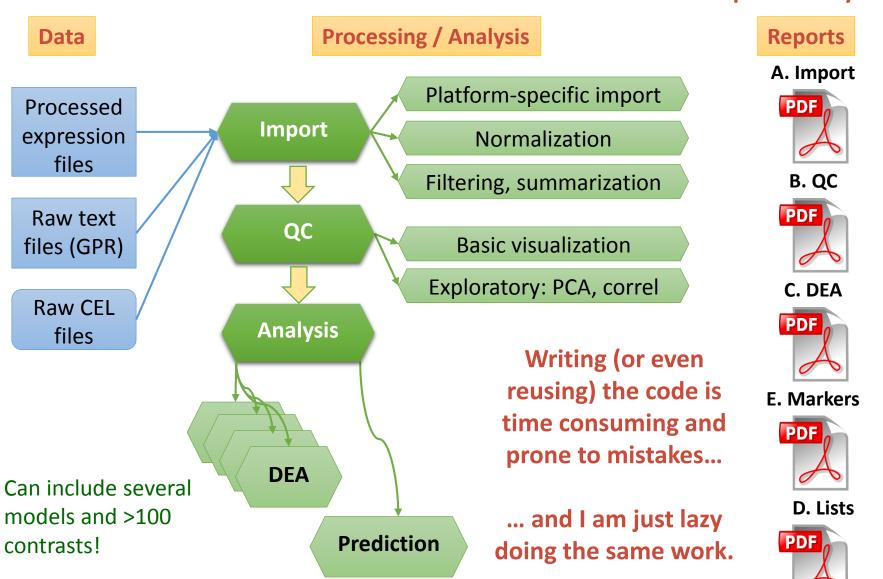


# MaRA – an Automatic <u>Microarray R</u>-based <u>A</u>nalysis Pipeline

Petr Nazarov



# **Outline**


### MaRA = a "dream" in Belarusian

- Pipeline in microarray analysis
- Features of MaRA
- Example HepMirSTAT project (prof. Iris Behrman)

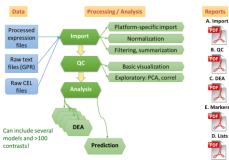


# **General Scheme**

### **Steps of Analysis**





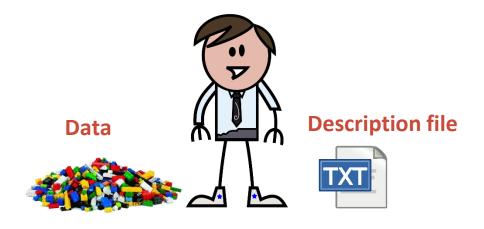



### **Features**

MaRA (Microarray R-based Analysis) is an advanced flexible pipeline for automated analysis of microarray data and reporting the results.

### **Features**

- R-based pipeline
- Scalable & flexible analysis
- Automatic processing and reporting:




### **Drawbacks**

No GUI (is in development)

### **Development**

- R / Bioconductor
- Qt C++ (GUI in development)









### **Example of a Description File: Standard INI Configuration**

```
[Project]
 Title = Project Pit Ullmann
 Names = P.Ullmann, E.Letellier, S.Haan
 Platform = Affymetrix HuGene 2.0 ST
 Description = Effect of treatments on 2 cell lines
[Analysis]
Model = Cells + Treatment + Cells*Treatment
CL18 clust.vs.ctrl = CL18, Cluster - CL18, Ctrl
CL620 clust.vs.ctrl = CL620, Cluster - CL620, Ctrl
Ctrl 18.vs.620 = CL18, Ctrl - CL620, Ctrl
Cluster 18.vs.620 = CL18, Cluster - CL620, Cluster
diffCL_Cluster.vs.Ctrl = (CL18,Cluster - CL18,Ctrl) - (CL620,Cluster - CL620,Ctrl)
 ExpressionThreshold = 5
```

```
[Colors]
red = CL18,Ctrl
orange = CL18, Cluster
blue = CL620, Ctrl
cyan = CL620, Cluster
```





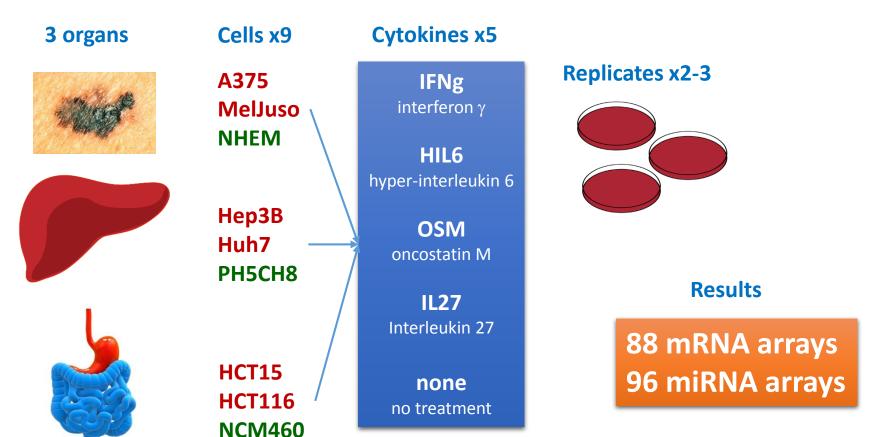
### **Example of a Description File: Standard INI Configuration**

SDE genes found in contrasts can be intersected/united/excluded: &, |, !, ()

```
[Lists]
FDR = 0.01
FC = 1
list_Colon_cancer.v.healthy = Colon_HT29.vs.NCM460 & Colon_HCT116.vs.NCM460
list_Skin_cancer.v.healthy = Skin_MelJuso.vs.NHEM & Skin_A375.vs.NHEM
list_Liver_cancer.v.healthy = Liver_Hep3B.vs.PH5CH8 & Liver_Huh7.vs.PH5CH8
list_B1_cancer.v.healthy = Colon_HT29.vs.NCM460 & Colon_HCT116.vs.NCM460 & St
```

### Additional analysis – looking for markers in groups of samples

```
[Markers]
AUC = 0.99
mark_Colon = *,*,*,colon - (*,*,*,skin + *,*,*,liver)
mark_Skin = *,*,*,skin - (*,*,*,colon + *,*,*,liver)
mark_Liver = *,*,*,liver - (*,*,*,skin + *,*,*,colon)
mark_Liver.vs.Skin = *,*,*,liver - *,*,*,skin
mark_Liver.vs.Colon = *,*,*,liver - *,*,*,colon
mark_Skin.vs.Colon = *,*,*,skin - *,*,*,colon
mark_Cancer = *,*,cancer,* - *,*,normal,*
```




# **Example: HepMirSTAT**

### Project of University: cytokines in CL at mRNA & miR level

Investigation of signaling after cytokine stimulation in cell lines originated from 3 organs – skin, liver, colon.

PI - prof. Iris BEHRMANN, UniLu





**Questions** asked

x2 as miRNA and mRNA datasets should be investigated!

What is an effect of each cytokine in each cell line?

specific genes for

each cytokine?

Do we have

Can we see tissuespecific response to cytokines?

Any common tendency between cytokines signaling?

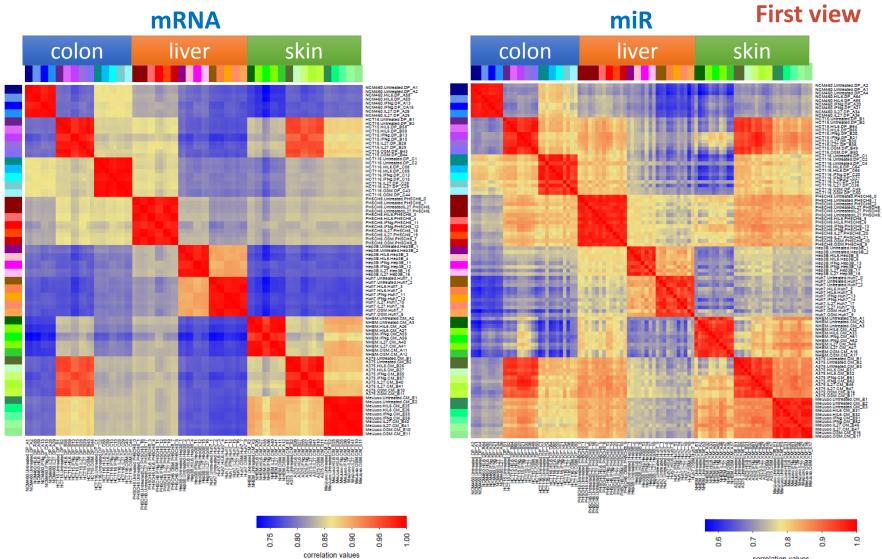
Do we have marker genes for cancer / healthy cells?

Can we see cancerspecific response to cytokines?

~ 100 samples

92 comparisons




14 lists of markers

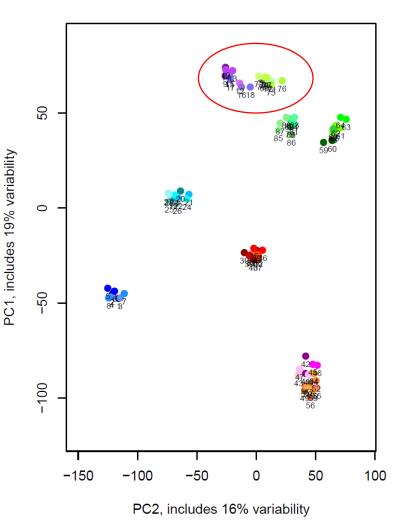
5 reports ©

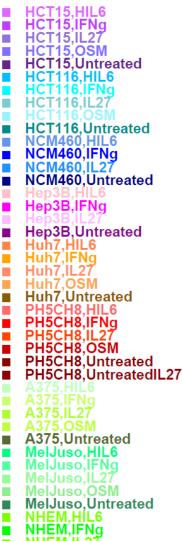
miRNA vs mRNA vs TargetScan

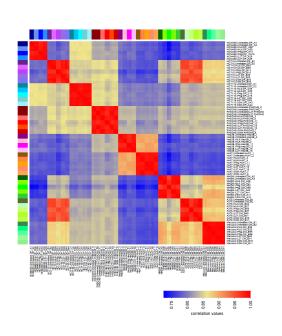
**31** intersection lists






Noise in miR data is higher. Cytokine effect is much smaller then cell type effect.

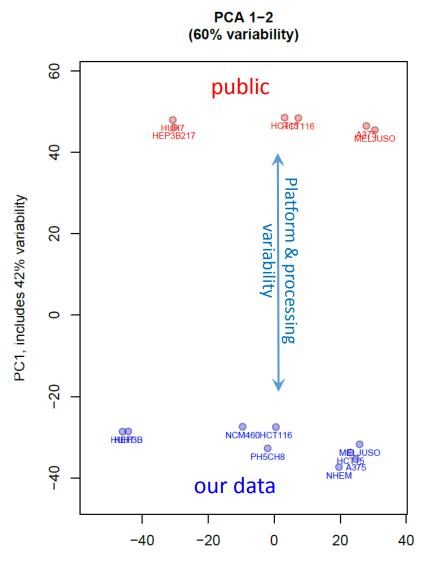




### Issue?

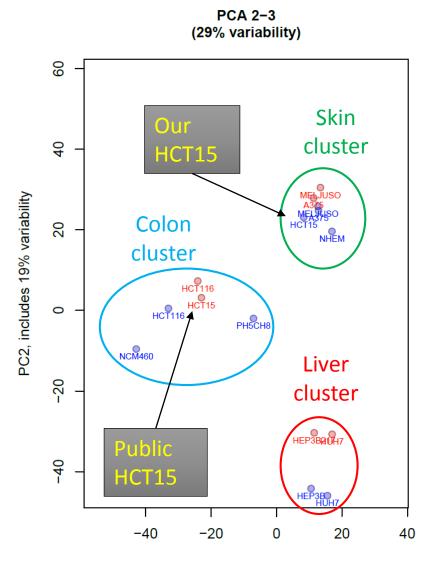
### Why is HCT15 similar to A375?

Principle component analysis (PCA) (35% variability)





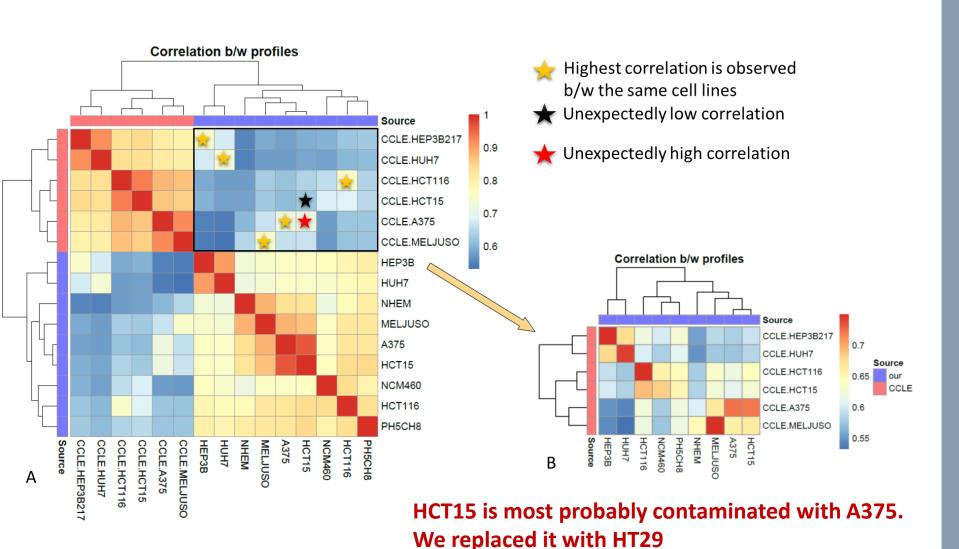




Let's have a deeper look with Cancer Cell Line Encyclopedia (CCLE) data

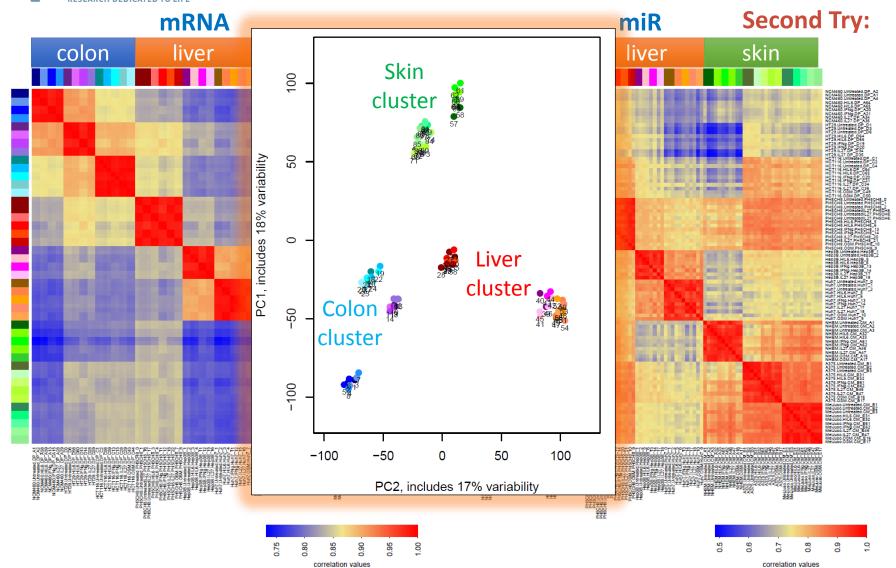


### **First view**




PC 1 captures b/w platform differences



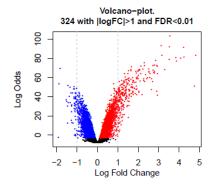

PC 2-3 capture tissue differences



## **HCT15** is most probably contaminated by A375







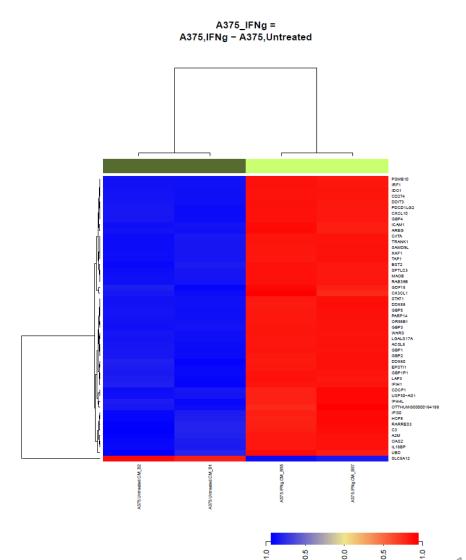



### A375\_IFNg = A375,IFNg - A375,Untreated

|           | logFC >0 | logFC >0.5 | logFC >1 | logFC >2 |
|-----------|----------|------------|----------|----------|
| FDR<0.05  | 8415     | 1826       | 324      | 52       |
| FDR<0.01  | 6640     | 1813       | 324      | 52       |
| FDR<0.001 | 5027     | 1768       | 323      | 52       |

### 




Top 25 probes. Look for the complete list in DE=A375\_IFNg.txt

| Top 25 probe |        | blobes. L | es. Look for the complete |             |  |  |
|--------------|--------|-----------|---------------------------|-------------|--|--|
|              | logFC  | AveExpr   | adj.P.Val                 | Gene.Symbol |  |  |
|              | 4.8199 | 5.8536    | 0                         | GBP4        |  |  |
|              | 4.2209 | 5.1924    | 0                         | CD274       |  |  |
|              | 3.547  | 5.809     | 0                         | IRF1        |  |  |
|              | 4.2401 | 6.9842    | 0                         | GBP1        |  |  |
|              | 4.0816 | 5.2839    | 0                         | IDO1        |  |  |
|              | 3.524  | 4.8014    | 0                         | GBP5        |  |  |
|              | 3.8389 | 5.7626    | 0                         | GBP1P1      |  |  |
|              | 3.8732 | 5.7346    | 0                         | XAF1        |  |  |
|              | 3.1251 | 9.0768    | 0                         | STAT1       |  |  |
|              | 3.5092 | 6.5973    | 0                         | GBP3        |  |  |
|              | 3.1604 | 4.6776    | 0                         | LGALS17A    |  |  |
|              | 4.7524 | 5.4888    | 0                         | CXCL10      |  |  |
|              | 3.3013 | 5.6671    | 0                         | SAMD9L      |  |  |
|              | 2.8489 | 5.7948    | 0                         | CIITA       |  |  |
|              | 2.9338 | 7.1773    | 0                         | TAP1        |  |  |
|              | 2.8952 | 6.464     | 0                         | ACSL5       |  |  |
|              | 2.7947 | 4.6455    | 0                         | PDCD1LG2    |  |  |
|              | 2.7202 | 6.6156    | 0                         | A2M         |  |  |
|              | 2.9483 | 6.9096    | 0                         | GBP2        |  |  |
|              | 2.7911 | 6.6602    | 0                         | BST2        |  |  |
|              | 2.718  | 5.7971    | 0                         | UBD         |  |  |
|              | 2.7975 | 5.7914    | 0                         | OAS2        |  |  |
|              | 2.7613 | 6.4274    | 0                         | AREG        |  |  |
|              | 2.5133 | 5.9309    | 0                         | EPSTI1      |  |  |
|              | 2.2894 | 5.7031    | 0                         | MAOB        |  |  |

| gene_assignment                                                             |
|-----------------------------------------------------------------------------|
| NM_052941 // GBP4 // guanylate binding protein 4 // 1p22.2 // 115361 //.    |
| NM_014143 // CD274 // CD274 molecule // 9p24 // 29126 /// ENST0000          |
| NM_002198 // IRF1 // interferon regulatory factor 1 // 5q31.1 // 3659 /// E |
| NM_002053 // GBP1 // guanylate binding protein 1, interferon-inducible      |
| NM_002164 // IDO1 // indoleamine 2,3-dioxygenase 1 // 8p12-p11 // 36        |
| NM_001134486 // GBP5 // guanylate binding protein 5 // 1p22.2 // 11536      |
| NR_003133 // GBP1P1 // guanylate binding protein 1, interferon-inducib      |
| NM_017523 // XAF1 // XIAP associated factor 1 // 17p13.1 // 54739 /// N     |
| NM_007315 // STAT1 // signal transducer and activator of transcription 1    |
| NM_018284 // GBP3 // guanylate binding protein 3 // 1p22.2 // 2635 /// E    |
| NR_034156 // LGALS17A // Charcot-Leyden crystal protein pseudogen-          |
| NM_001565 // CXCL10 // chemokine (C-X-C motif) ligand 10 // 4q21 //         |
| NM_152703 // SAMD9L // sterile alpha motif domain containing 9-like //      |
| NM_000246 // CIITA // class II, major histocompatibility complex, transac   |
| NM_000593 // TAP1 // transporter 1, ATP-binding cassette, sub-family E      |
| NM_016234 // ACSL5 // acyl-CoA synthetase long-chain family membe           |
| NM_025239 // PDCD1LG2 // programmed cell death 1 ligand 2 // 9p24.2         |
| NM_000014 // A2M // alpha=2-macroglobulin // 12p13.31 // 2 /// ENST0        |
| NM_004120 // GBP2 // guanylate binding protein 2, interferon-inducible      |
| NM_004335 // BST2 // bone marrow stromal cell antigen 2 // 19p13.1 // (     |
| NM_006398 // UBD // ubiquitin D // 6p21.3 // 10537 /// ENST000003770:       |
| NM_001032731 // OAS2 // 2'-5'-oligoadenylate synthetase 2, 69/71kDa         |
| NM_001657 // AREG // amphiregulin // 4q13.3 // 374 /// ENST00000264-        |
| NM_001002264 // EPSTI1 // epithelial stromal interaction 1 (breast) // 13   |
| NM_000898 // MAOB // monoamine oxidase B // Xp11.23 // 4129 /// ENS         |

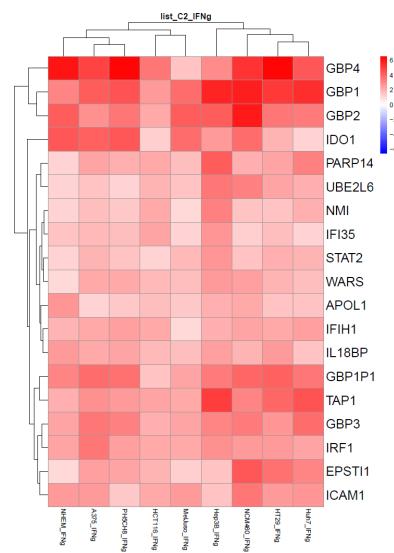
# **HepMirSTAT**

**DEA (1 of 92)** 



standartized expression values




List: list\_C2\_IFNg

# Lists generated

Formula: A & B & C & D & E & F & G & H & I

|    | List         | Signif | Up  | Down |
|----|--------------|--------|-----|------|
| Α  | A375_IFNg    | 324    | 263 | 61   |
| В  | HCT116_IFNg  | 100    | 98  | 2    |
| C  | HT29_IFNg    | 236    | 209 | 27   |
| D  | Hep3B_IFNg   | 221    | 191 | 30   |
| E  | Huh7_IFNg    | 142    | 138 | 4    |
| F  | MelJuso_IFNg | 67     | 67  | 0    |
| G  | NCM460_IFNg  | 195    | 169 | 26   |
| Н  | NHEM_IFNg    | 521    | 268 | 253  |
| I  | PH5CH8_IFNg  | 190    | 180 | 10   |
| => | list_C2_IFNg | 19     | 19  | 0    |

Majority of the genes indeed comes from IFNg pathways.





### **DEA overview**

### **mRNA**

| Cell line | OSM | HIL6 | IL27 | IFNg |
|-----------|-----|------|------|------|
| MelJuso   | 2   | 3    | 9    | 67   |
| HCT116    | 0   | 0    | 25   | 100  |
| PH5CH8    | 35  | 3    | 34   | 190  |
| HT29      |     | 43   | 25   | 236  |
| NCM460    |     | 34   | 79   | 195  |
| Нер3В     |     | 94   | 102  | 221  |
| A375      | 8   | 4    | 124  | 324  |
| Huh7      | 134 | 88   | 106  | 142  |
| NHEM      | 29  | 34   | 54   | 521  |

### miR

| Cell line | OSM | HIL6 | IL27 | IFNg |
|-----------|-----|------|------|------|
| MelJuso   | 0   | 1    | 2    | 13   |
| HCT116    | 6   | 0    | 0    | 0    |
| PH5CH8    | 1   | 0    | 1    | 6    |
| HT29      |     | 3    | 0    | 18   |
| NCM460    |     | 3    | 1    | 30   |
| Нер3В     |     | 0    | 3    | 3    |
| A375      | 12  | 1    | 56   | 44   |
| Huh7      | 13  | 18   | 0    | 4    |
| NHEM      | 10  | 6    | 3    | 24   |

Common: only with IFNg stimulation – 19 mRNAs

And the rest of the interpreting is done at Uni side – we are waiting for an update meeting with them. In December they were presenting 2 posters.



# **Acknowledgements**

# **Genomics Research team, LIH**

Elise Mommaerts
Nathalie NICOT
Tony KAOMA
Arnaud MULLER
Laurent VALLAR

LSRU, LU

Florence SERVAIS
Mélanie KIRCHMEYER
Stephanie KREIS
Iris BEHRMANN