

## An Interdisciplinary Summer School on Mining of Biological Data for MSc and PhD students

## Invited Lecture: Methods in Single Cell Transcriptomics

## **Petr Nazarov**

## petr.nazarov@lih.lu

2018-08-14, Festsalen

http://edu.sablab.net/nmbu2018/



## **Outline**

- The problem of heterogeneity
- Method 1: ICA
- Single-cell (SC) transcriptomics
- SC data properties
- Method 2: t-SNE (t-distributed stochastic neighbor embedding)
- Some examples



Adapted from:

https://bio.libretexts.org/TextMaps/Map%3A\_Microbiology\_(OpenStax)/10%3A\_Biochemistry\_of\_the\_Genome/10.3%3A\_Structure\_ and\_Function\_of\_RNA

http://www.bmrb.wisc.edu/featuredSys/ubiquitin/ubiquitin1.shtml

#### NMBU, Norway, 2018 2

http://edu.sablab.net/nmbu2018/

## Introduction



Imagine we are going to analyze RNA from a tumor biopsy (sample):



Hanahan D, Weinberg RA. Cell 2011, 144, 646-74

## Introduction



### This is like recording a cocktail party:



What did James say?..

## Introduction





- Laser microdissection (time consuming)
- Cell dissociation and single cell analysis

- Non-negative matrix factorization (NMF)
- Independent component analysis (ICA)

Let's consider first ICA method and then move to single cell transcriptomics (as we shall use the method there) <sup>(C)</sup>



### One of the methods to solve cocktail party problem...





### **Deconvolution of Cell Ensemble**



#### 2018-08-14



### What ICA does and does not

$$X_{gs} \approx S_{gk} \times M_{ks} \qquad \begin{array}{c} g - g \\ s - g \\ k - g \end{array}$$

g – genes s – samples k - components

### Pro:

- 1. Finds **statistically-independent signals** (components) in the expression profiles
- 2. Identifies the **most important genes** in each component
- 3. Tells what is the weight of **each component in the samples**
- 4. Works on data *per se*, **without any additional knowledge**
- 5. Gives quite **robust answer**... just... reshuffled

### Contra:

- 1. Needs a lot of data. The original data should not be too skewed.
- 2. No ranking of the components by importance (not like PCA)
- 3. Results are **not deterministic** and can to some extent depends on the run => multiple run / consensus approach is needed!
- 4. Orientation of the signal is arbitrary from one run to another
- 5. If you look for precise estimation of cell fraction not a good idea (results will be qualitative not quantitative)





Orthogonal Captures major variation (well, on average...) Linear combination of independent sources. Positive and negative. Each point can be represented as a vector sum of NF1, NF2. Strictly positive.

1

from A. Zinovyev, et al, Biochem Biophys Res Commun. 2013,18;430(3):1182-7 https://www.ncbi.nlm.nih.gov/pubmed/23261450

#### 2018-08-14

NF1

1.5



### **Data visualization: PCA & ICA**







Single Cell Transcriptomics – one of the method to handle the tissue heterogeneity problem.



have different unique molecular identifiers (UMIs).

https://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-and-tutorials/drop-seq/

2018-08-14

LUXEMBOURG

#### LUXEMBOURG INSTITUTE OF **HEALTH** RESEARCH DEDICATED TO LIFE

## **Single Cell Data Properties**

Ideal: one bead - one cell



What you have in practice:



no cell, floating RNA



debris: often mitochondria

### Number of "reads" (detected RNA fragments) per cell



2018-08-14

### **Therefore:**

- Single-cell RNA-seq data are sparse (many zeros) and large (expect to have 10<sup>2</sup>-10<sup>4</sup> cells x 10<sup>3</sup>-10<sup>4</sup> genes).
- 2. Filtering is unavoidable and often remove majority of "cells".
- 3. Standard normalization methods are questionable.

## **Single Cell Data Properties**

### PCA of SC RNA-seq data



- PCA captures variability => distant data points have larger effect
- PC1 always captures number of reads per cell

   this is the largest effect (even after normalization)
- Biologists do not like it as the density of points is not constant ☺

We need a method that is going to:

- puts the similar objects together
- produces the picture with constant density
- is easy to understand 🙂

UXEMBOURG



t-SNE is an iterative non-linear transformation that search for objects representation in 2D space by:

- 1) placing the similar objects together
- 2) controlling the density of the obtained clusters

Unlike PCA, distant objects are not influencing t-SNE!



#### Pro:

- easy to understand
- no effect of outliers

### Con:

- depends on init.estim.
- can be over-interpreted !
- depends on *perplexity* parameter

Play with t-SNE here: <a href="https://distill.pub/2016/misread-tsne/">https://distill.pub/2016/misread-tsne/</a>

UXEMBOURG



### t-SNE for single cell transcriptomics



PCA of all data (3% variability)



t-SNE plot



Group • NCH421 • NCH644 • NCH644\_frac1 • NCH644\_frac2

### .

#### 2018-08-14

NMBU, Norway, 2018 16

LUXEMBOURG INSTITUTE

OF HEALTH

t-SNE

Malignant cells

tSNE1

Mel60

Mel72

Mel74

Mel78

Mel79

Mel80

Mel53

Mel58

С

tSNE2



### t-SNE for single cell transcriptomics

#### **RESEARCH ARTICLES**

A

Blood

ollectio

Single cell pipeline

Library preparation

Single cell RNA sequencing

Disaggregatior RBC lysis

FACS

Antibody

staining

#### **CANCER GENOMICS**

### Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq

Itay Tirosh,<sup>1\*</sup> Benjamin Izar,<sup>1,2,3\*</sup><sup>†</sup> Sanjay M. Prakadan,<sup>1,4,5,6</sup> Marc H. Wadsworth H.<sup>1,4,5,6</sup> Daniel Treese,<sup>1</sup> John J. Trombatta <sup>1</sup> Acaf Botem <sup>1,2,3</sup>

Bulk WES



tSNE1

Mel88

Mel89

Mel94

Mel81

Mel84

### 4645 cells:150k reads (mean)

2018-08-14

19 tumors:

10 lymphoid 8 distant

1 acral primary

4659 genes (CD45-)
3438 genes (CD45+)

Computational analysis

Bulk whole exome sequencing for 2

samples

(WES)

17

## **Example: Design**





Application of ICA to SC data is a strange idea. But why not ;)

### **Expectations:**

- See cellular process
- Get visualization within the coordinates, that can have biological meaning

## **Example: Data**





20982(80141+1)

## **Example: Data**



### **Filtered data**





## **Example: Normalization Effect**

### **Normalization Issues**

### Not normalized





DESeq2 normalized Library size Normalization artefacts









## **Example: Normalization Effect**







## Do we stop the project and lose over 30k euro?



# No. Let's have some fun with the data 😳

## **Example: ICA**



### ICA with 8 components: M (weights) over experiments



## **Example: ICA**



### Analysis of contributing genes (S): biological processes



SRP-dependent cotranslational protein ta... cotranslational protein targeting to mem... protein targeting to ER a lot of MTs



3

4

cell cycle & DNA replication CDK1, TOP2A, CDK2, CCNA2

CCNA2, CDK1, TOP2A, CDK2

generation of precursor metabolites and ...

SRP-dependent cotranslational protein ta...

mitotic cell cycle,

ATP metabolic process



## **Example: ICA**



### **Gene expression: CCNA2**



## **Single Cell ADAPT: ICA**



27

### Same cell cycle in depth





### **Correction of batch effect**





Group • NCH421 • NCH644 • NCH644\_frac1 • NCH644\_frac2

2018-08-14

## **Example: Conclusions**



### • PCA can capture 2 differences:

- b/w NCH421 and NCH644.x cells
- batch (time?) effect: NCH644 -vs- NCH421 + NCH644.1 + NCH644.2
- ICA can capture the same as PCA, and in addition:
  - Cell cycle and other bio-relevant processes
  - Technical bias
- The SC normalization can be omitted. ICA results are similar wit or w/o normalization: biologically-relevant components are reproducible in raw and normalized datasets.



## Acknowledgements



### Proteome and Genome Research Unit, Luxembourg Institute of Health (LIH)

Arnaud MULLER Tony KAOMA Dr. Francisco AZUAJE Dr. Gunnar DITTMAR **NORLUX Neuro-Oncology, LIH** 

Dr. Anna GOLEBIEWSKA Prof. Simone NICLOU







### **Institute Curie, France** Dr. Andrei ZINOVYEV





Fonds National de la Recherche Luxembourg