

MISB Course Transcriptomics (Dr. Stephanie Kreis)

Introduction to Data Analysis in Transcriptomics

Petr Nazarov

petr.nazarov@lih.lu

2019-10-17 & 2019-10-18

Overview of regulation of gene expression

1

Data overview

- Microarrays
- RNA-seq

Exploratory data analysis

PCA

clustering

Differential expression analysis

- multiple hypotheses
- linear models
- Classification and marker genes
- Enrichment analysis

Data Overview

junction expression

naiouucaion to buth Analysis

Affymetrix: Probes, Probesets and Transcript clusters

Microarray Data

Data Example (in log scale)

ID	Gene.Symbol	A1	A2	A3	A4	B1	B2
TC02002853.hg.1	SP110	5.694	5.684	5.719	5.715	7.287	7.288
TC01002850.hg.1	GBP5	3.873	3.839	3.997	3.935	8.699	8.654
TC19000554.hg.1	LGALS17A	3.981	3.967	4.045	4.066	7.887	7.752
TC01006362.hg.1	GBP7	3.862	3.830	3.900	3.881	5.996	6.076
TC16000565.hg.1	SNTB2	7.765	7.734	7.748	7.755	8.973	9.027
TC12000425.hg.1	EIF4B	9.161	9.144	9.150	9.154	8.808	8.811
TC13000383.hg.1	TNFSF13B	3.922	3.890	3.873	3.918	5.151	5.199
TC09000999.hg.1	DDX58	6.629	6.661	6.671	6.598	8.302	8.367
TC06001673.hg.1	ETV7	4.427	4.467	4.434	4.348	6.815	6.713
TC05001767.hg.1	IRF1	5.409	5.470	5.552	5.396	7.988	8.000
TC17000821.hg.1	SSTR2	3.939	3.900	3.922	3.880	5.283	5.360
TC0X001551.hg.1	CLIC2	4.481	4.441	4.388	4.377	6.504	6.416
TC17000705.hg.1	MSI2	6.221	6.201	6.203	6.219	5.832	5.820
TC09000038.hg.1	PDCD1LG2	4.151	4.072	4.219	4.148	6.276	6.330
TC17001523.hg.1	DHX58	4.636	4.581	4.614	4.618	5.526	5.489
TC22000701.hg.1	APOL4	4.866	4.812	4.971	4.828	7.230	7.277
TC02001524.hg.1	ADI1	6.761	6.734	6.760	6.766	6.311	6.313
TC22000700.hg.1	APOL3	5.088	5.080	5.090	5.026	6.715	6.830
TC06000932.hg.1	NUS1	7.870	7.882	7.856	7.871	7.543	7.547
TC14001152.hg.1	GCH1	6.266	6.344	6.268	6.257	7.582	7.551

Here gene expression data are given in log₂ intensity

RNA-Seq Data

Next-Generation Sequencing: RNA-seq

Wang Z et al. RNA-Seq: a revolutionary tool for transcriptomics. **Nat Rev Genet. 2009**

RNA-Seq Data

File Types

@HWI-ST508:152:D06G9ACXX:2:1101:1160:2042 1:Y:0:ATCACG NAAGACCGAATTCTCCAAGCTATGGTAAACATTGCACTGGCCTTTCATCTG

Read – a short sequence identified in RNA-Seq experiment **Library** – set $(10^5 - 10^8)$ of reads from a single sample

@HD @SQ @SQ @CO	VN:1.0 SO:cd SN:seq1 LN:5 SN:seq2 Example of S	oordinate 5000 LN:5000 SAM/BAM file	format.			
B7_591:4:96	:693:509 73	seq1	1	99	36м	*
_	0	0	CACTAGTGGCT	CATTGTAAATGT	GTGGTTTAACTC	G
			<<<<<<	<<<< ; <<<<<	<<5<<<<; :< ;	7
	MF:i:18	Aq:i:73	NM:i:0	UQ:i:0	H0:i:1	
H1:i:0EAS54	_65:7:152:368	3:113	73	seq1	3	99
	35M	*	0	0		
CTAGTGGCTCATTGTAAATGTGTGGTTTAACTCGT						
	<<<<<<	<<<<655<<7<<	<:9<<3/:<6):	MF:i:18	Aq:i:66	
	NM:i:0	UQ:i:0	H0:i:1	H1:i:0		

For the list of tools see:

+

http://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools

Advantage over arrays: you can repeat the pipeline with new knowledge or questions

Data Example (in linear scale)

ID	Gene.Symbol	A1	A2	A3	A4	B1	B2
ENSG00000135899	SP110	32	31	33	33	136	136
ENSG00000154451	GBP5	0	0	0	0	395	383
ENSG00000226025	LGALS17A	0	0	0	0	217	196
ENSG00000213512	GBP7	0	0	0	0	44	47
ENSG00000260873	SNTB2	198	193	195	196	483	502
ENSG0000063046	EIF4B	552	546	548	550	428	429
ENSG00000102524	TNFSF13B	0	0	0	0	16	17
ENSG00000107201	DDX58	79	81	82	77	296	310
ENSG00000010030	ETV7	2	2	2	0	93	85
ENSG00000125347	IRF1	22	24	27	22	234	236
ENSG00000180616	SSTR2	0	0	0	0	19	21
ENSG00000155962	CLIC2	2	2	1	1	71	65
ENSG00000153944	MSI2	55	54	54	54	37	37
ENSG00000197646	PDCD1LG2	0	0	0	0	58	60
ENSG00000108771	DHX58	5	4	4	5	26	25
ENSG00000100336	APOL4	9	8	11	8	130	135
ENSG00000182551	ADI1	88	86	88	89	59	60
ENSG00000128284	APOL3	14	14	14	13	85	94
ENSG00000153989	NUS1	214	216	212	214	167	167
ENSG00000131979	GCH1	57	61	57	56	172	167

Here gene expression data are given in counts

Public Repositories

GEO: http://www.ncbi.nlm.nih.gov/gds

Hara Maria	ner Britanis (Brazil) - 12 Marian (Brazilian) Maria	in reserve the gas	n Miching an	
A familian	Retails - Re		•	
and the second s	والمتحد والمحاجب فالموسطان وواحا والمتا	1. Sec. 1. Sec	the base for	
report and the first of the second s	Construction of the second secon		In the part of the last international and the last	
-	 Contractor providence interview Contractor (Contractor) Contractor) Contractor (Contractor) Co		(1797)	-
	III I manufacture (Barrer GUT And Barrer H Same) A dag at 1 description and the state is the state is provide a provide state of the state state of the state state of the state of the state of the state state of the state of th	nag teo marka marka Marka	ann ang Santang Santang Santang Santang Santang	ALC: NO

Browse Content			
Repository Browser			
DataSets:	3847		
Series: 🔕	50810		
Platforms:	13387		
Samples:	1237318		

ArrayExpress: http://www.ebi.ac.uk/arrayexpress/

Contraction of Contractor	- (*	1	
	anapping and MCCONTRACTOR	∀ C [*] ≤ + 3mp [*] .	2 3 8 4 6
i tendi 💽 filotoni i Gr	A server 🖄 K. A 🖶 TOX (A, CHANDE) 🖉 BAD	ente han energe 14 de laiter in herenen 🖞 (1271)	The Stay Wheeler -
a manager and the		~	TAR AND LOUGH AND AND
🔁 Arra	yExpress	Samin 1352 Linco 43 Perfs	alarta Shind
ne Renters	Arreys Cabrill, Help She Lines For	W 11.	 Fairceck - Allegin
and a second second second	en a l'infant (sea		
MEXP 6044 To terforen gamme	ansorption proliting by anty of hun induced gene transcription	nan malignant melanomo poli i	ine, AS75, following
/973.1	An energy of an expected of the fact over being	on of the last of	
Tapatra.	KINC INC HM		
Condition 1. (C	S SA STANDAR AND A DRIVER IN	a, lin ba so sinta	
Arme (1)	AND DESCRIPTION AND ADDRESS SPECIFIC	L'artic State	
Profession (A)	Ubdit for describe protocol information		
Charlyd e	In this case the restoring states of poster the time of the rest response to the state of the	exceptional events are determined in the experimental of a significant distance of the exception of the e	d) descension of water, location way mit/size to enable water in the control of BMA servers and the form with a material star the transmission of index with the transmission of index with the transmission of the material servers are the the form within the server (in the material stars with the server) (in the material stars with the servers).

Data Content
Updated today at 06:00
 52801 experiments
 1555904 assays
 24.99 TB of archived data

TCGA: https://tcga-data.nci.nih.gov/tcga/

Analysis via: http://www.cbioportal.org/public-portal/

Take Home Messages

Microarrays should be normalized to remove effects of variable RNA content

Expression-related data in transcriptomics (fluorescence intensity in microarrays and counts in RNAseq) are strongly right-skewed. Therefore:

- For statistics use either precise distribution (negative binomial for RNA-seq) or work with log-transformed data (microarrays).
- Use log-transformed data for exploratory analysis and visualization

Main advantage of RNA-seq data: they can be reprocessed and reused taking into account new genomic annotation or asking new questions

Several large repositories of the data exist. Before planning your experiments – make a search for existing data

Exploratory Analysis

Exploratory Data Analysis

LUXEMBOURG

Principal Component Analysis (PCA)

Principal component analysis (PCA)

is a vector space transform used to reduce multidimensional data sets to lower dimensions for analysis. It selects the **coordinates along which the variation of the data is bigger.**

20000 genes \rightarrow 2 dimensions

For the simplicity let us consider 2 parametric situation both in terms of data and resulting PCA.

Instead of using 2 "natural" parameters for the classification, we can use the first component!

Exploratory Data Analysis

PCA

PCA Mapping (39.5%)

PCA Mapping (48.4%)

PCA in TCGA (LUSC data)

PCA for samples by SCC (23% variability)

PC1, includes 18% variability

k-Means Clustering

k-Means Clustering

k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.

1) k initial "means" (in this case k=3) are randomly selected from the data set (shown in color).

2) k clusters are created by associating every observation with the nearest mean.

3) The centroid of each of the k clusters becomes the new means. 4) Steps 2 and 3 are repeated until convergence has been reached.

http://wikipedia.org

k-Means Clustering: Iris Dataset (Fisher)

clusters = kmeans(x=Data,centers=3,nstart=10)\$cluster
plot(PC\$x[,1],PC\$x[,2],col = classes,pch=clusters)
legend(2,1.4,levels(iris\$Species),col=c(1,2,3),pch=19)
legend(-2.5,1.4,c("c1","c2","c3"),col=4,pch=c(1,2,3))

Hierarchical Clustering

Hierarchical Clustering

Hierarchical clustering creates a hierarchy of clusters which may be represented in a tree structure called a dendrogram. The root of the tree consists of a single cluster containing all observations, and the leaves correspond to individual observations. Algorithms for hierarchical clustering are generally either agglomerative, in which one

starts at the leaves and successively merges clusters together; or divisive, in which one starts at the root and recursively splits the clusters.

Exploratory Data Analysis

Heatmaps

Diff.SeAx.Jurkat = (SeAx,UVB - SeAx,Ctrl) - (Jurkat,UVB - Jurkat,Ctrl)

Exploratory Data Analysis

Fuzzy Clustering: Mfuzz

Take Home Messages

Start your investigation with PCA, which will help

- Reduce dimensionality and help visualizing your data
- See which **factors** may play the **important role** in your data
- Find outlier experiments

Clustering your data decide whether you would like to separate in a fixed number of groups and be more robust (k-means) or to a variable number of clusters and be more flexible (hierarchical)

Heatmap allows you to visualize profiles of expression among samples and among genes in one graph

Classification

Gene Markers

Questions

- Based on which genes or gene sets we can predict the group of the samples?
- How reliable is this prediction?

Selection of Features: ROC and AUC

ROC curve

(receiver operating characteristic) is a graphical plot of the sensitivity, or true positive rate, vs. false positive rate (1-specificity or false positive rate)

AUC

area under ROC curve: 1 – ideal separation, 0.5 – random separation.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

ROC is introduced for 2 classes.

If we have more then 2 classes – create several ROC curves (1 per class)

http://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture22.htm

Simple Classifier: Logistic Regression

Logistic regression

Linearly combines the features and calculates 1) will divide you data to 2 groups, and 2) has the optimal distance from the closest elements of the groups

Logistic regression: sigmoid function upon linear regression:

$$F(z) = \frac{1}{1 + e^{-(b_1 x_1 + b_2 x_2 + \dots + b_0)}}$$

EMBOURG

More Advanced Classification Methods

Support vector machine (SVM)

System tries to find a line (hyper plane) which1) will divide you data to 2 groups, and2) has the optimal distance from the closest elements of the groups

Random Forest (RF)

Makes a set of decision trees (if value x is less then x0 then we choose class A), which is called "forest". Then vote among the trees.

forest

Classification and Marker Genes

Artificial Neuron – a Simple Processing Unit (~ logistic regression)

Introduction to Data Analysis Dendrites: inputs

Classification and Marker Genes

Feed Forward Network (FFN), a.k.a. Multi-layer Perceptron (MLP)

Forward propagation of information

1 layer

2 layers

4 layers

Take Home Messages

Diagnostics & prediction include 3 main steps:

- 1. Data analysis transforms data into set of features
- 2. Select features with predictive properties
- ✤ 3. Use a classification algorithm

AUC is one of the measures to select genes with strong predictive properties. Ideal AUC = 1, minimal AUC (worst situation) = 0.5

Classifiers: logistic regression, SVM, RF, neural networks

When doing classification for a real application - always divide your data in two groups: training and testing subsets to avoid overtraining

Differential Expression Analysis

Basics

Questions

- Which genes have changes in mean expression level between conditions?
- How reliable are this observations

What is this p-value ?

One-tailed test

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in one tail of its sampling distribution

 $H_0: \mu \le \mu_0$ $H_0: \mu \ge \mu_0$ $H_a: \mu < \mu_0$
 $H_a: \mu > \mu_0$ $H_a: \mu < \mu_0$

A Trade Commission (TC) periodically conducts statistical studies designed to test the claims that manufacturers make about their products. For example, the label on a large can of Hilltop Coffee states that the can contains 3 pounds of coffee. The TC knows that Hilltop's production process cannot place exactly 3 pounds of coffee in each can, even if the mean filling weight for the population of all cans filled is 3 pounds per can. However, as long as the population mean filling weight is at least 3 pounds per can, the rights of consumers will be protected. Thus, the TC interprets the label information on a large can of coffee as a claim by Hilltop that the population mean filling weight is at least 3 pounds per can. We will show how the TC can check Hilltop's claim by conducting a lower tail hypothesis test.

 μ_0 = 3 lbm Suppose sample of n=36 coffee cans is selected. From the previous studies it's known that σ = 0.18 lbm

What is this p-value ?

 $\mu_0 = 3 \text{ lbm}$

$H_0: \mu \ge 3$	no action
<i>H</i> _a : μ < 3	legal action

Let's say: in the extreme case, when μ =3, we would like to be 99% sure that we make no mistake, when starting legal actions against Hilltop Coffee. It means that selected significance level is $\alpha = 0.01$

What is this p-value ?

Let's find the probability of observation m for all possible $\mu \ge 3$. We start from an extreme case (μ =3) and then probe all possible $\mu > 3$. See the behavior of the small probability area around measured m. What you will get if you summarize its area for all possible $\mu \ge 3$?

P(m) for all possible $\mu \ge \mu_0$ is equal to P(x < m) for an extreme case of $\mu = \mu_0$

Differential Expression Analysis

http://www.xkcd.com/882/

Multiple Hypotheses

Probability of an error in a multiple test:

1-(0.95)number of comparisons

LUXEMBOURG INSTITUTE

Multiple Hypotheses: False Discovery Rate

False discovery rate (FDR)

FDR control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors).

		Population	n Condition	
		H ₀ is TRUE	H ₀ is FALSE	Total
sion	Accept H ₀ (non-significant)	U	T	m-R
onclus	Reject H_0 (significant)	V	S	R
Ŭ	Total	m_0	$m-m_0$	т

$$FDR = E\left(\frac{V}{V+S}\right)$$

Differential Expression Analysis

False Discovery Rate: Benjamini & Hochberg

Assume we need to perform m = 100 comparisons, and select maximum **FDR** = α = 0.05

p.adjust(pv, method="fdr")

$$FDR = E\left(\frac{V}{V+S}\right)$$

Expected value for FDR < α if

$$P_{(k)} < \frac{k}{m} \alpha$$

$$\frac{mP_{(k)}}{k} < \alpha$$

Theoretically, the sign should be "≤". But for practical reasons it is replaced by "<"

Familywise Error Rate (FWER)

Bonferroni – simple, but too stringent, not recommended

 $mP_{(k)} < \alpha$

Holm-Bonferroni – a more powerful, less stringent but still universal FWER

$$(m+1-k)P_{(k)} < \alpha$$

Why is it so important to correct p-values?..

Let's generate a completely random experiment (Excel)

✤ Generate 6 columns of normal random variables (1000 points/candidates in each).

Consider the first 3 columns as "treatment", and the next 3 columns as "control".

Using t-test calculate p-values b/w "treatment" and "control" group. How many candidates have p-value<0.05 ?</p>

Calculate FDR. How many candidates you have now?

	Candidates. Same candidates.
Random Number Generation	5% are false Just sorted
Number of Yariables: 6 OK Number of Random Numbers: 1000 Cancel Distribution: Normal Help Parameters Mean = 0 Standard deviation = 1	Top 5% selected ???
ndom Seed: tput options Qutput Range: \$A\$1	
k	
uction to Data Analysis	e e e e e e e e e e e e e e e e e e e

Differential Expression Analysis

Linear Models

Many conditions

We have measurements for 5 conditions. Are the means for these conditions equal?

Many factors

We assume that we have several factors affecting our data. Which factors are most significant? Which can be neglected? If we would use pairwise comparisons, what will be the probability of getting error?

Number of comparisons: C_2^5

$$=\frac{5!}{2!3!}=10$$

Probability of an error: $1-(0.95)^{10} = 0.4$

http://easylink.playstream.com/affymetrix/ambsymposium/partek_08.wvx

Linear Models

As part of a long-term study of individuals 65 years of age or older, sociologists and physicians at the Wentworth Medical Center in upstate New York investigated the relationship between geographic location and depression. A sample of 60 individuals, all in reasonably good health, was selected; 20 individuals were residents of Florida, 20 were residents of New York, and 20 were residents of North Carolina. Each of the individuals sampled was given a standardized test to measure depression. The data collected follow; higher test scores indicate higher levels of depression.

Q: Is the depression level same in all 3 locations?

depression.txt

1. Good health respondents				
Florida	New York	N. Carolina		
3	8	10		
7	11	7		
7	9	3		
3	7	5		
8	8	11		
8	7	8		

 $H_0: \mu_1 = \mu_2 = \mu_3$

 $H_{\rm a}$: not all 3 means are equal

Linear Models

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $H_{\rm a}$: not all 3 means are equal

LIMMA & EdgeR : Linear Models for Microarrays

 $Y_{ij} = \mu_i + A_j + B_j + A_j * B_j + \epsilon_{ij}$

i – gene index j – sample index

 $A_i * B_i$ – effect which cannot be explained by superposition A and B

Limma – R package for DEA in <u>microarrays</u> based on linear models.

It is similar to t-test / ANOVA but using all available data for variance estimation, thus it has higher power when number of replicates is limited

edgeR – R package for DEA in <u>RNA-Seq</u>, based on linear models and negative binomial distribution of counts.

Better noise model results in higher power detecting differentially expressed genes

negative binomial process – number of tries before success: rolling a die until you get 6

Take Home Messages

When doing multiple hypothesis testing and selecting only those elements which are significantly – always use FDR (or other, like FWER) correction!

the simplest correction – multiply p-value by the number of genes. Is it still significant? The best correction – use FDR or FWER

DEA provides the genes which have variability in mean gene expression between condition

=> more data you have, smaller differences you will be able to see

Several factors can be taken into account in ANOVA approach. This will give you insight into significance of each experimental factor but at the same time will correct batch effects and allow answering complex questions (remember shoes affecting ladies...).

Enrichment Analysis

1. Category Enrichment Analysis

Are interesting genes overrepresented in a subset corresponding to some biological process?

sand belongs to: http://www.dreamstime.com/photos-images/pile-sand.html ;)))

Enrichment Analysis

1. Category Enrichment Analysis

Fisher's exact test: based on hypergeometrical distributions

 $P = 1 - \sum_{i=0}^{k-1} \frac{\binom{i}{n-i}}{\binom{N}{i}}$

Hypergeometrical: distribution of objects taken from a "box", without putting them back

N: total number of genes

M: total number of genes annotated with this term

n: number of genes in the list

k: number of genes in the list annotated with this term

$$C_k^n = C_n^k = {\binom{n}{k}}^{*} = \frac{n!}{k! (n-k)!}$$

Okamoto et al. Cancer Cell International 2007 7:11 doi:10.1186/1475-2867-7-11

Enrichment Analysis

2. Gene Set Enrichment Analysis (GSEA)

A. Subramanian et al. PNAS 2005,102,43

Take Home Messages

To find biological meaning of the significantly regulated genes use enrichment analysis methods linking known groups of genes to DEA results

Enriched categories are usually more robust then individual genes

Single Cell Transcriptomics

Single Cell Transcriptomics – one of the method to handle the tissue heterogeneity problem.

have different unique molecular identifiers (UMIs).

https://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-and-tutorials/drop-seq/

Single Cell Data Properties

Ideal: one bead - one cell

What you have in practice:

two cells

no cell, floating RNA

some cellular debris: often mitochondria

Number of "reads" (detected RNA fragments) per cell

Therefore:

- Single-cell RNA-seq data are sparse (many zeros) and large (expect to have 10²-10⁴ cells x 10³-10⁴ genes).
- 2. Filtering is unavoidable and often remove majority of "cells".
- 3. Standard normalization methods are questionable.

PCA of SC RNA-seq data

- PCA captures variability => distant data points have larger effect
- PC1 always captures number of reads per cell

 this is the largest effect (even after normalization)
- Biologists do not like it as the density of points is not constant ☺

We need a method that is going to:

- puts the similar objects together
- produces the picture with constant density
- is easy to understand 🙂

Visualization of large datasets

t-SNE is an iterative non-linear transformation that search for objects representation in 2D space by:

- 1) placing the similar objects together
- 2) controlling the density of the obtained clusters

Unlike PCA, distant objects are not influencing t-SNE!

Pro:

- easy to understand
- no effect of outliers

Con:

- depends on init.estim.
- can be over-interpreted !
- depends on *perplexity* parameter

Play with t-SNE here: https://distill.pub/2016/misread-tsne/

t-SNE for single cell transcriptomics

PCA of all data (3% variability)

PCA plots

t-SNE plot

Group • NCH421 • NCH644 • NCH644_frac1 • NCH644_frac2

Malignant cells

tSNE1

Mel60

Mel72

Mel74

Mel78

Mel53

Mel58

С

tSNE2

t-SNE for single cell transcriptomics

RESEARCH ARTICLES

A

Bulk whole exome sequencing for 2

samples

(WES)

Introduction to Data Analysis

Blood

ollectio

Single cell pipeline

Library preparation

Single cell RNA sequencing

Computational analysis

Disaggregatior RBC lysis

FACS

Antibody

staining

CANCER GENOMICS

Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq

Itay Tirosh,^{1*} Benjamin Izar,^{1,2,3*}[†] Sanjay M. Prakadan,^{1,4,5,6} Marc H. Wadsworth H. ^{1,4,5,6} Danial Tracay.¹ John J. Trombatta ¹ Acaf Potom ^{1,2,3}

Bulk WES

tSNE1

Mel88

Mel89

Mel81

Mel84

Mel79

Mel80

150k reads (mean)
4659 genes (CD45-)

4645 cells:

19 tumors:

10 lymphoid 8 distant

1 acral primary

3438 genes (CD45+)

59

Mel94

Thank you for your attention !

Practice

Please visit: <u>http://edu.sablab.net/transcript/</u> and follow the instructions

Task1. Simple analysis in Excel

TCGA (LUSC) database extract:

- 20 normal lung tissues
- 20 squamous cell carcinoma tissues

Affymetrix HTA 2.0 arrays on:

- 10 normal lung tissues
- 10 squamous cell carcinoma tissues Tissues are paired!

Task3. Analysis in TAC software (optional)

Affymetrix HuGene arrays on A375 cell line under IFNg treatment

Example: let's make it easy

http://edu.sablab.net/transcript/lusc20.xlsx

1. Find genes significantly differentially expressed in SCC vs normal tissue

- apply t-test. Same or different variance?
- perform FDR correction
- Keep genes with FDR > 0.001
- 2. Calculate mean logFC and keep only genes with |logFC| > 2
- 3. Make a "volcano plot": -log10(FDR) vs LogFC
- 4. Save lists of up and down regulate genes we shall need them

UXEMBOURG

Task 1. Enrichment Analysis

LUSC Example

http://edu.sablab.net/transcript/lusc20.txt

- 0. Prepare lists of DE genes...
- 1. Put up-regulated into enrich
- 3. Check: Down CMAP, Disease Signatures from GEO up,
- 4. Try biocompendium
- 5. Put top 100 genes into String to see PP-interactions

http://amp.pharm.mssm.edu/Enrichr/

http://biocompendium.embl.de/

http://string-db.org

Up regulated

Example: GO enrichment

http://edu.sablab.net/transcript

Strategy 1:

Take all DEG and use them in enrichment.

- Safe
- No additional assumptions
- Cannot distinguish \uparrow and \downarrow functions

Strategy 2:

Separate DEG to down- and up- regulated genes. Then perform independent enrichment by these 2 groups

- Can be biased (gene can be $\uparrow \downarrow$)
- Assume ↑gene => ↑function
- Can distinguish \uparrow and \downarrow functions

Enrichr

http://amp.pharm.mssm.edu/Enrichr

BioCompendium

http://biocompendium.embl.de/

Task2. Practical Preview: SCC Dataset

Lung SCC cancer, 9 patients, 18 samples

Data: <u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84784</u>

Soft: Transcriptome Analysis Console [TAC]

http://www.qmedicine.co.in/top%20health%20topics/L/Lung%20Cancer.html

Human melanoma A375 cells were seeded together and cultured until sample collection. Cells were IFNy-stimulated at different time points.

Nucleic Acids Research, Volume 41, Issue 5, 1 March 2013, Pages 2817–2831, https://doi.org/10.1093

Data: https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-3720/

Soft: Transcriptome Analysis Console [TAC]

Introduction to Data Analysis

LUXEMBOURG INSTITUTE

OF HEALTH