

LUXEMBOURG INSTITUTE OF **HEALTH**

RESEARCH DEDICATED TO LIFE Multiomics Data Science

BIOSTATISTICS

Lecture 9 Correction for Multiple Testing

dr. Petr Nazarov

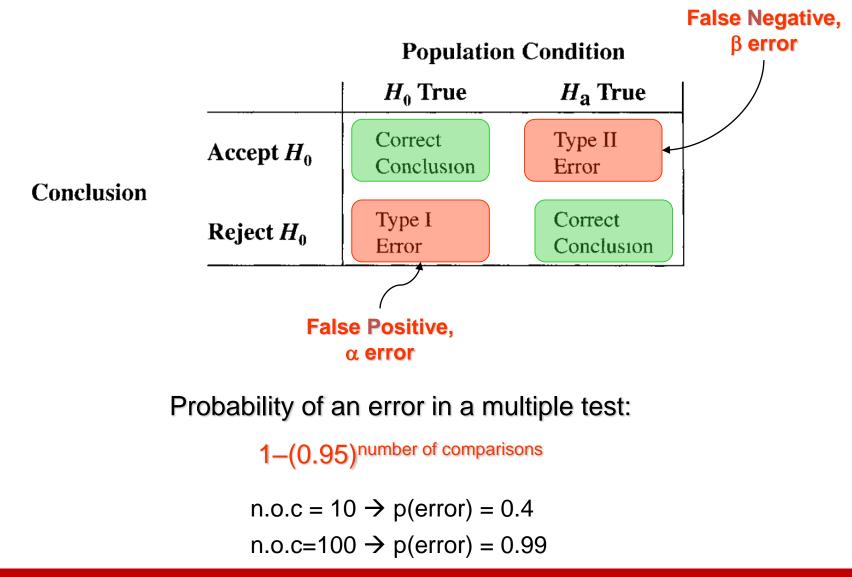
petr.nazarov@lih.lu

4-04-2020

Lecture 9. Correction for multiple testing

Lecture 8

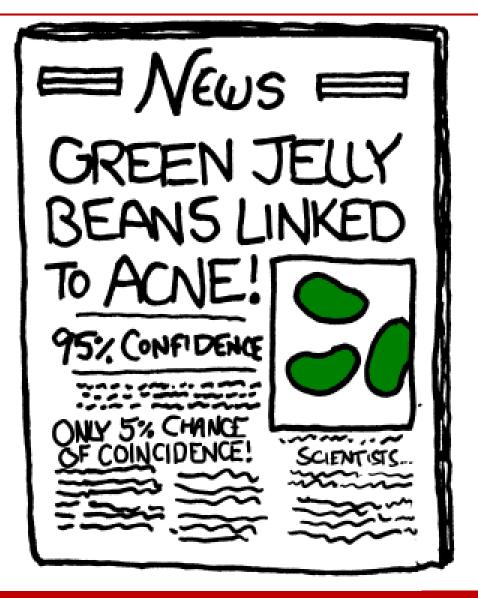
PART I → Test


PART II

- Multiple testing problem
- ✦ False discovery rate

MULTIPLE TESTING

Correct Results and Errors



Lecture 9. Correction for multiple testing

MULTIPLE TESTING

Example

http://www.xkcd.com/882/

MULTIPLE TESTING

False discovery rate (FDR)

FDR control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors).

		Population Condition			
		H ₀ is TRUE	H ₀ is FALSE	Total	
onclusion	Accept H ₀ (non-significant)	U	Т	m-R	
	Reject H_0 (significant)	V	S	R	
Ŭ	Total	m_0	$m-m_0$	т	

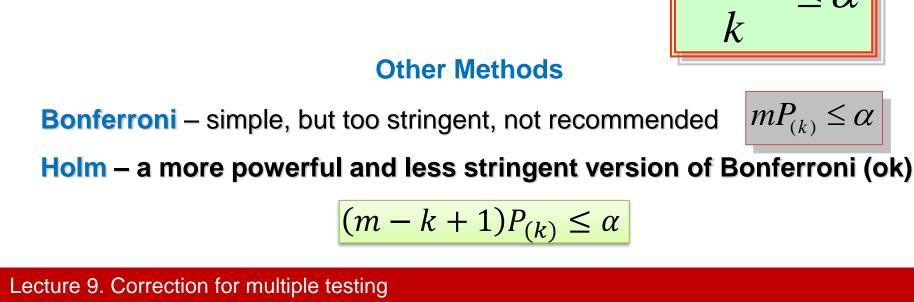
$$FDR = E\left(\frac{V}{V+S}\right)$$

False Discovery Rate

Assume we need to perform m = 100 comparisons, and select maximum **FDR = \alpha = 0.05**

Independent tests

The Simes procedure ensures that its expected value
$$\mathbb{E}\left[\frac{V}{V+S}\right]$$
 is less than a given α (Benjamini and Hochberg


1995). This procedure is valid when the m tests are independent. Let $H_1 \dots H_m$ be the null hypotheses and $P_1 \dots P_m$ their corresponding p-values. Order these values in increasing order and denote them by

 $P_{(1)} \dots P_{(m)}$. For a given α , find the largest k such that $P_{(k)} \leq \frac{k}{m} \alpha$.

Then reject (i.e. declare positive) all $H_{(i)}$ for $i=1,\ldots,k$.

Note that the mean lpha for these m tests is $rac{lpha(m+1)}{2m}$ which could be used as a rough FDR, or RFDR, "lpha adjusted

for *m* indep. tests." The RFDR calculation shown here provides a useful approximation and is not part of the Benjamini and Hochberg method; see AFDR below.

Benjamini-Hochberg's FDR

Assume we need to perform m = 100 comparisons,

and select maximum FDR = α = 0.05

Expected value for FDR < α if

k – is rank of p-value (order #)

UNIVERSITÉ DU

LUXEMBOURG

Bonferroni – simple, but too stringent, not recommended

Other Methods

 $P_{(k)} \leq \frac{k}{m} \alpha$

 \rightarrow

 $mP_{(k)}$

 $mP_{(k)} \leq \alpha$

$$FDR = E\left(\frac{V}{V+S}\right)$$

False Discovery Rate

MULTIPLE EXPERIMENTS

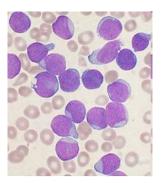
Generate 6 columns of normal random variables (1000 points/candidates in each).

Consider the first 3 columns as "treatment", and the next 3 columns as "control".

Using t-test calculate p-values b/w "treatment" and "control" group. How many candidates have p-value<0.05 ?</p>

Calculate FDR. How many candidates you have now?

Random Number Generation	n			? X		
Number of <u>V</u> ariables:		6		ОК		
Number of Random Num <u>b</u> ers	5:	1000		Cancel		
<u>D</u> istribution:	Normal		•	<u>H</u> elp		
Parameters						
M <u>e</u> an =	0					
<u>S</u> tandard deviation =	1					
<u>R</u> andom Seed:						
Output options						
Output Range:	\$A	\$1				
New Worksheet Ply:						
Random Seed: Output options Output Range: New Worksheet <u>P</u> ly: New <u>W</u> orkbook						


Example: Acute Lymphoblastic Leukemia

http://edu.sablab.net

all data.xls

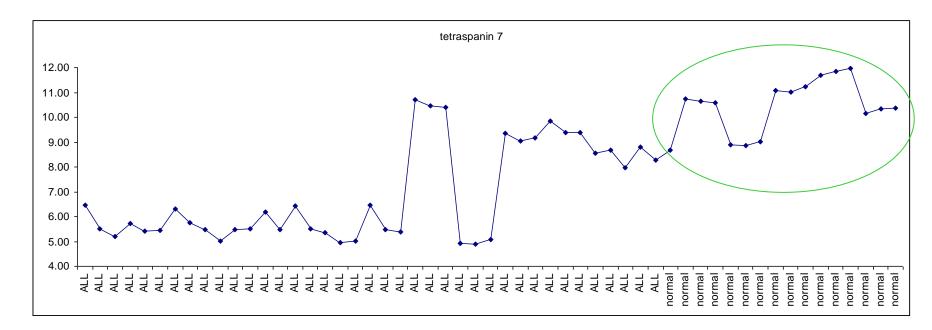
Acute lymphoblastic leukemia (ALL), is a form of leukemia, or cancer of the white blood cells characterized by excess lymphoblasts.

all_data.xls contains the results of full-trancript profiling for ALL patients and healthy donors using Affymetrix microarrays. The data were downloaded from ArrayExpress repository and normalized. The expression values in the table are in \log_2 scale.

Let us analyze these data:

- Calculate log-ratio (logFC) for each gene
- Calculate the p-value based on t-test for each gene
- Perform the FDR-based adjustment of the p-value.

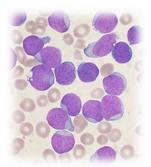
Calculate the number of up and down regulated genes with FDR<0.01


How would you take into account logFC?

Example score:

$$score = -\log(adj.p.value) \cdot |logFC|$$

FDR (adj. p-value) is a main measure. Other only help...


look for "tetraspanin 7" + leukemia in google ③

Results are never perfect... Deeper investigation of the ALL subgroup should be recommended.

Thank you for your attention

Lecture 9. Correction for multiple testing