

BIOSTATISTICS

Lecture 7

Hypothesis about Means and Proportions of Two Populations

dr. Petr Nazarov

petr.nazarov@lih.lu

30-03-2018

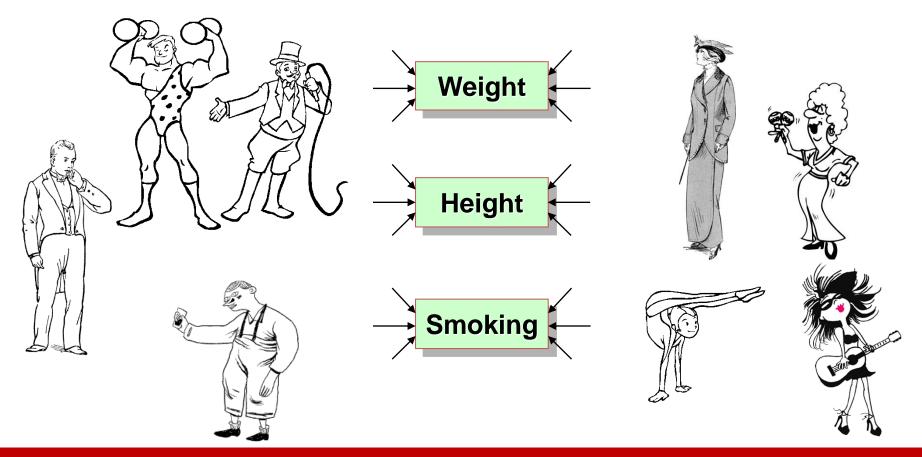
- Independent and dependent samples
- ◆ Comparison of means: t-test
- Paired t-test
- Comparison of two proportions

TWO POPULATIONS

Independent Samples

Independent samples

Samples selected from two populations in such a way that the elements making up one sample are chosen independently of the elements making up the other sample.



TWO POPULATIONS

Dependent Samples

Matched samples

Samples in which each data value of one sample is matched with a corresponding data value of the other sample.

Before treatment After treatment **Analysis** Prepare Target mRNAs RT/PCR Generate Microarray Hybridise target mixture to microarray

MEANS OF TWO POPULATIONS

Example

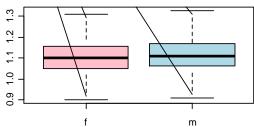
mice.xls

outliers are removed from boxplots

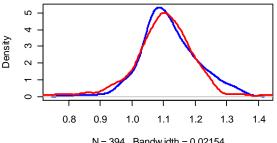
Final body weights (g) 20 m

Body weight distributions Density 10 30 50 20 N = 394 Bandw idth = 1.499

Weights change (g)



Distributions of weight change



N = 394 Bandwidth = 0.02154

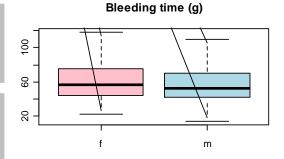
Distributions of bleeding times

N = 381 Bandw idth = 5.729

Q1: Is body weight for male and female significantly different?

Q2: Is weight change for male and female significantly different?

Q3: Is bleeding time for male and female significantly different?

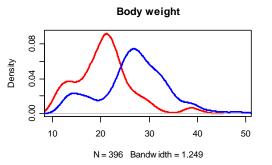


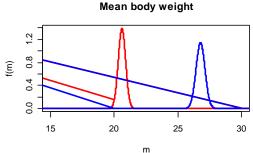
Density 0.000 50 150 100 200

MEANS OF TWO POPULATIONS

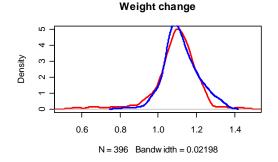
Example

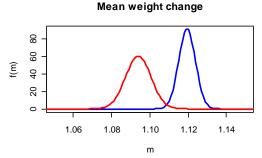
Q1: Is body weight for male and female significantly different?



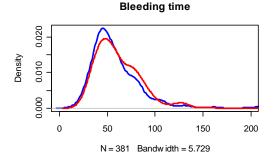


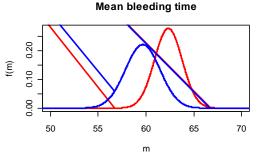
Q2: Is weight change for male and female significantly different?





Q3: Is bleeding time for male and female significantly different?





HYPOTHESES

Theory

Two tail hypothesis

$$H_0$$
: $\mu_1 = \mu_2$

$$H_a: \mu_1 \neq \mu_2$$

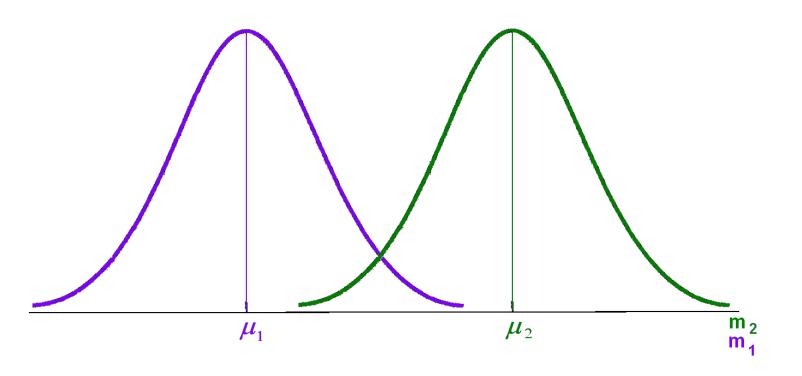
One tail hypothesis

$$H_0: \mu_1 \geq \mu_2$$

$$H_a$$
: $\mu_1 < \mu_2$

$$H_0$$
: $\mu_1 \le \mu_2$

$$H_a: \mu_1 > \mu_2$$



COMPARING MEANS

Theory

As we know how to work with standard hypotheses (comparison with constant μ_0), let us transform our hypothesis:

$$H_0$$
: $\mu = \mu_0$
 H_a : $\mu \neq \mu_0$

$$H_0: \mu_1 = \mu_2$$
 $H_a: \mu_1 \neq \mu_2$

$$H_0$$
: $\mu_2 - \mu_1 = 0$
 H_a : $\mu_2 - \mu_1 \neq 0$

$$H_a$$
: $\mu_2 - \mu_1 \neq 0$

To use it, we need to know what is the distribution of $D = m_2 - m_1$

Distribution of sum or difference of 2 normal random variables

The sum/difference of 2 (or more) normal random variables is a normal random variable with mean equal to sum/difference of the means and variance equal to SUM of the variances of the compounds.

Variables	m_1	m_2	m_2-m_1
Means	μ_1	μ_2	$\mu_2 - \mu_1$
Variances	$\sigma_1^{\ 2}$	σ_2^2	$\sigma_1^2 + \sigma_2^2$

COMPARING MEANS

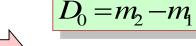
Theory

$$H_0$$
: $\mu_2 - \mu_1 = D_0$

$$H_0$$
: $\mu_2 - \mu_1 = D_0$
 H_a : $\mu_2 - \mu_1 \neq D_0$

$$D_0 = \mu_2 - \mu_1$$

$$\sigma_{m_2-m_1} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$



$$s_{m_2 - m_1} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Statistics to be used for hypothesis testing:

if σ is known: z-statistics

$$z = \frac{m_2 - m_1 - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

if σ is unknown: t-statistics

$$t = \frac{m_2 - m_1 - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

This is what we call a t-test !!!

COMPARING MEANS

Unpaired t-test: Algorithm

$$H_0$$
: $\mu_2 - \mu_1 = D_0$

$$H_a$$
: $\mu_2 - \mu_1 \neq D_0$

$$D_0 = m_2 - m_1$$

$$H_0: \mu_2 - \mu_1 = D_0$$
 $H_a: \mu_2 - \mu_1 \neq D_0$
Usually $D_0 = 0$

$$s_{m_2 - m_1} = \sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}$$

1. Build the statistics to be used for hypothesis testing:

$$t = \frac{m_2 - m_1 - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

t-distribution has following degrees of freedom:

$$t = \frac{m_2 - m_1 - D_0}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}}$$

$$df = \frac{\left(\frac{s_1^2 + s_2^2}{n_1 + n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2 + s_2^2}{n_2}\right)^2}$$

$$(n_1 + n_2)/2 < df < n_1 + n_2$$

$$df = (n-1)\frac{(s_1^2 + s_2^2)^2}{(s_1^4 + s_2^4)}$$

2. Calculate the p-value

$$\Rightarrow$$
 = TDIST(ABS(t), df, 2)

②. Or simply do:

 \Rightarrow = T.TEST (array1, array2, 2, 3)

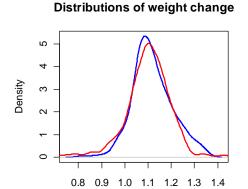
UNPAIRED T-TEST

Example

mice.xls

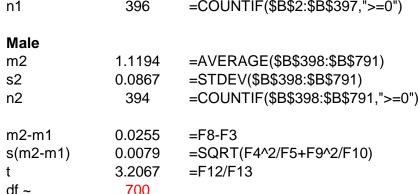
Q2: Is the mean of weight change for male and female significantly different?

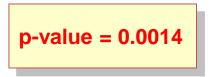


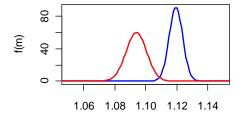


N = 394 Bandwidth = 0.02154

Parameter	Value	Command
Female		
m1	1.0939	=AVERAGE(\$B\$2:\$B\$397)
s1	0.1320	=STDEV(\$B\$2:\$B\$397)
n1	396	=COUNTIF(\$B\$2:\$B\$397,">=0")



p-value (1) 0.001403856 =TDIST(F14,700,2) p-value (2) 0.00140541 =TTEST(\$B\$2:\$B\$397,\$B\$398:\$B\$791,2,3) 



PAIRED T-TEST

Theory and Example

Paired t-test

In a paired t-test, instead of testing H_0 : $\mu_2 - \mu_1 = 0$, use following steps:

- 1. Build a new random value $y = x_1 x_2$ (subtract matched values).
- 2. Test whether one-sample mean μ_v = 0 (see Lecture 6)

bloodpressure.xls

Systolic blood pressure (mmHg)

Subject	BP before	BP after
1	122	127
2	126	128
3	132	140
4	120	119
5	142	145
6	130	130
7	142	148
8	137	135
9	128	129
10	132	137
11	128	128
12	129	133

The systolic blood pressures of n=12 women between the ages of 20 and 35 were measured before and after usage of a newly developed oral contraceptive.

Q: Does the treatment affect the systolic blood pressure?

Unpaired test

Paired test

Test	p-value	
unpaired	0.414662	
paired	0.014506	

COMPARING PROPORTIONS

Theory

$$H_0$$
: $\pi_1 = \pi_2$

$$H_a$$
: $\pi_1 \neq \pi_2$

$$H_0$$
: $\pi_1 - \pi_2 = 0$
 H_a : $\pi_1 - \pi_2 \neq 0$

$$H_0: \pi_1 = \pi_2$$

$$H_a: \pi_1 \neq \pi_2$$

$$H_a: \pi_1 - \pi_2 \neq 0$$

$$\sigma_{p_1 - p_2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Pooled estimator of π

An estimator of a population proportion obtained by computing a weighted average of the point estimators obtained from two independent samples.

$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$\sigma_{p_1-p_2} = \sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

= 2*NORM.S.DIST(-ABS(z),TRUE)

COMPARING PROPORTIONS

Example

SWR/J	MA/MyJ	
f	f	
f	f	
f	f	
f	f	
f	f	
f	f	
f	f	
f	f	
f	m	
f	m	
m	m	
m	m	
m	m	
m	m	
m	m	
m	m	
m	m	
m	m	
m	m	
	m	
	m	
	m	
	m	

mice.xls

Q: Is the male proportion significantly different in these mouse strains (0.47 and 0.65)?

$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Gives less precise estimation OR

$$z = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}$$

$$\Rightarrow$$
 = 2*NORM.S.DIST(-ABS(z),TRUE)

	SWR/J	MA/MyJ	pooled
count male	9	15	24
n	19	23	42
р	0.474	0.652	0.571
z	-1.16		
p-val	0.244658997	p-value = 0.24	

QUESTIONS?

Thank you for your attention

