

LUXEMBOURG INSTITUTE OF **HEALTH**

RESEARCH DEDICATED TO LIFE

Bioinformatics group, Proteome and Genome Research Unit

BIOSTATISTICS

Lecture 4

Sampling and Sampling Distribution

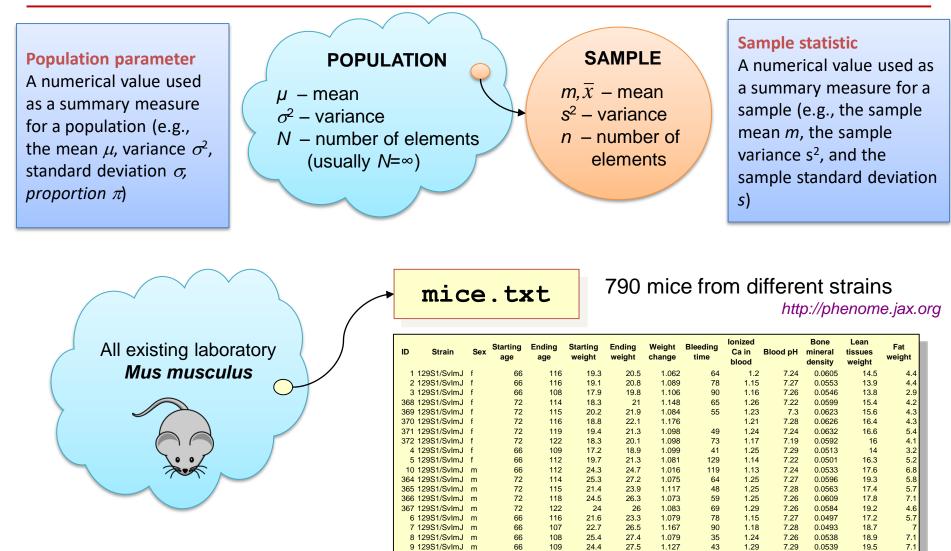
dr. Petr Nazarov

petr.nazarov@lih.lu

6-03-2020

OUTLINE

Lecture 4


Sampling distribution

- population and sample
- random sample
- sampling distribution
- properties of point estimators
- corrections for finite size of population
- central limit theorem
- other sampling methods

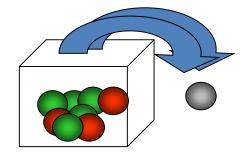
POPULATION AND SAMPLE

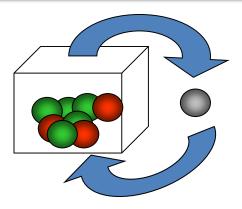
Parameters

POPULATION AND SAMPLE

Random Sampling

Simple random sampling


Finite population: a sample selected such that each possible sample of size *n* has the same probability of being selected.


Infinite population: a sample selected such that each element comes from the same population and the elements are selected independently.

Sampling without replacement Once an element has been included in the sample, it is removed from the population and cannot be selected a second time.

Sampling with replacement

Once an element has been included in the sample, it is returned to the population. A previously selected element can be selected again and therefore, may appear in the sample more than once.

POPULATION AND SAMPLE

Example: Making a Random Sampling

mice.xls

790 mice from different strains

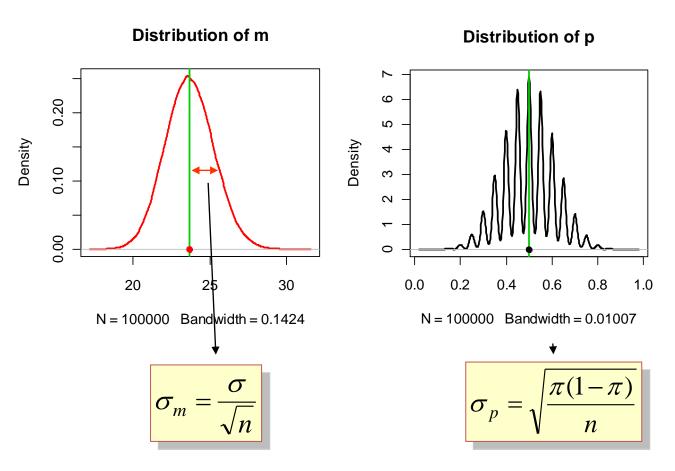
http://phenome.jax.org

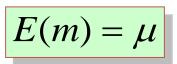
ID	Strain	Sex	Starting age	Ending age	Starting weight	Ending weight	Weight change	Bleeding time	lonized Ca in blood	Blood pH	Bone mineral density	Lean tissues weight	Fat weight
1	129S1/SvlmJ	f	66	116	19.3	20.5	1.062	64	1.2	7.24	0.0605	14.5	4.4
2	129S1/SvlmJ	f	66	116	19.1	20.8	1.089	78	1.15	7.27	0.0553	13.9	4.4
3	129S1/SvlmJ	f	66	108	17.9	19.8	1.106	90	1.16	7.26	0.0546	13.8	2.9
368	129S1/SvlmJ	f	72	114	18.3	21	1.148	65	1.26	7.22	0.0599	15.4	4.2
369	129S1/SvlmJ	f	72	115	20.2	21.9	1.084	55	1.23	7.3	0.0623	15.6	4.3
	129S1/SvlmJ	f	72	116	18.8	22.1	1.176		1.21	7.28	0.0626	16.4	4.3
371	129S1/SvImJ	f	72	119	19.4	21.3	1.098	49	1.24	7.24	0.0632	16.6	5.4
372	129S1/SvlmJ	f	72	122	18.3	20.1	1.098	73	1.17	7.19	0.0592	16	4.1
4	129S1/SvImJ	f	66	109	17.2	18.9	1.099	41	1.25	7.29	0.0513	14	3.2
5	129S1/SvlmJ	f	66	112	19.7	21.3	1.081	129	1.14	7.22	0.0501	16.3	5.2
	129S1/SvlmJ	m	66	112	24.3	24.7	1.016	119	1.13	7.24	0.0533	17.6	6.8
364	129S1/SvImJ	m	72	114	25.3	27.2	1.075	64	1.25	7.27	0.0596	19.3	5.8
365	129S1/SvlmJ	m	72	115	21.4	23.9	1.117	48	1.25	7.28	0.0563	17.4	5.7
366	129S1/SvlmJ	m	72	118	24.5	26.3	1.073	59	1.25	7.26	0.0609	17.8	7.1
367	129S1/SvlmJ	m	72	122	24	26	1.083	69	1.29	7.26	0.0584	19.2	4.6
6	129S1/SvImJ	m	66	116	21.6	23.3	1.079	78	1.15	7.27	0.0497	17.2	5.7
	129S1/SvlmJ	m	66	107	22.7	26.5	1.167	90	1.18	7.28	0.0493	18.7	7
8	129S1/SvlmJ	m	66	108	25.4	27.4	1.079	35	1.24	7.26	0.0538	18.9	7.1
9	129S1/SvlmJ	m	66	109	24.4	27.5	1.127	43	1.29	7.29	0.0539	19.5	7.1

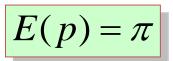
- 1. Add a column to the table
- 2. Fill it with =RAND ()
- 3. Sort all the table by this column

- 4. Assume that these mice is a population with size N=790. Build 5 samples with n=20
- 5. Calculate *m*, *s* for ending weight and p proportion of males for each sample

Point estimator

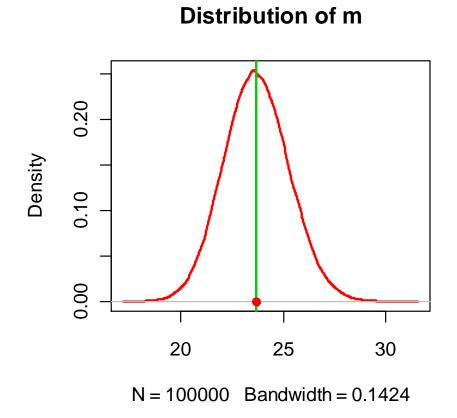

The sample statistic, such as *m*, *s*, or *p*, that provides the point estimation the population parameters μ , σ , π .




Sampling Distribution

Sampling distribution

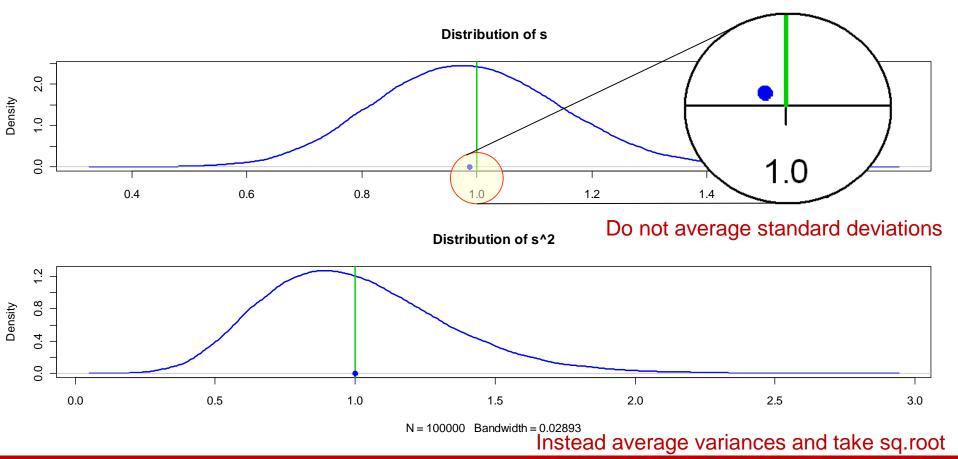
A probability distribution consisting of all possible values of a sample statistic.



Unbiased Point Estimator: mean

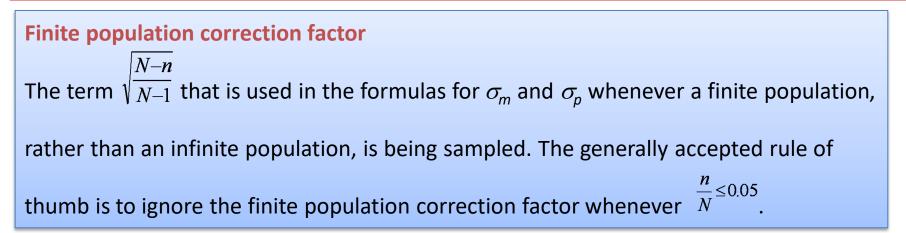
Unbiased

A property of a point estimator that is present when the expected value of the point estimator is equal to the population parameter it estimates.

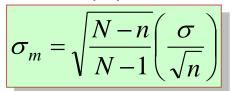


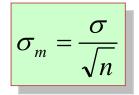
Unbiased Point Estimator: variance

Unbiased


A property of a point estimator that is present when the expected value of the point estimator is equal to the population parameter it estimates.

Lecture 4. Sampling and sampling distribution


Correction for Finite Population

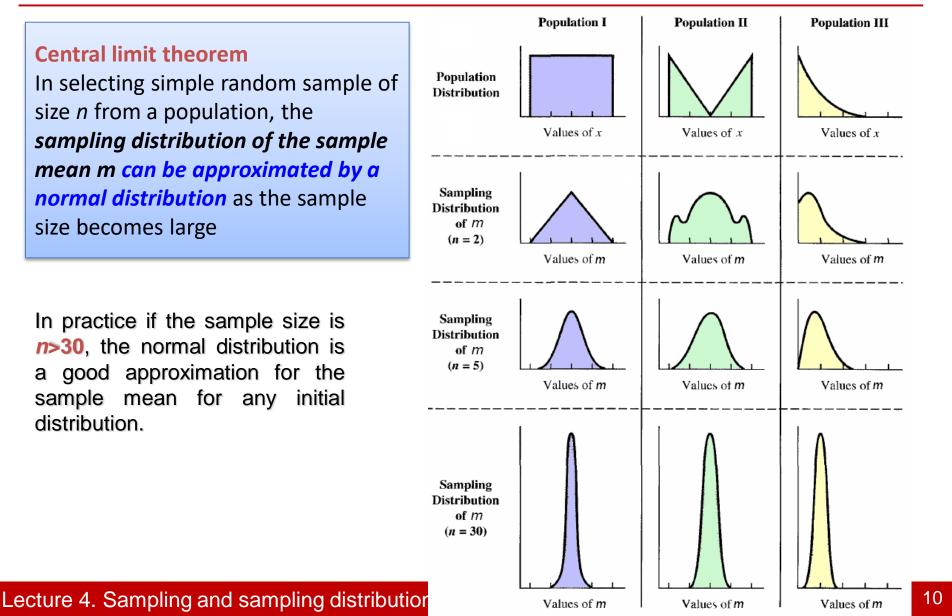


Standard deviation of the sample mean *m*

Finite population

Infinite population

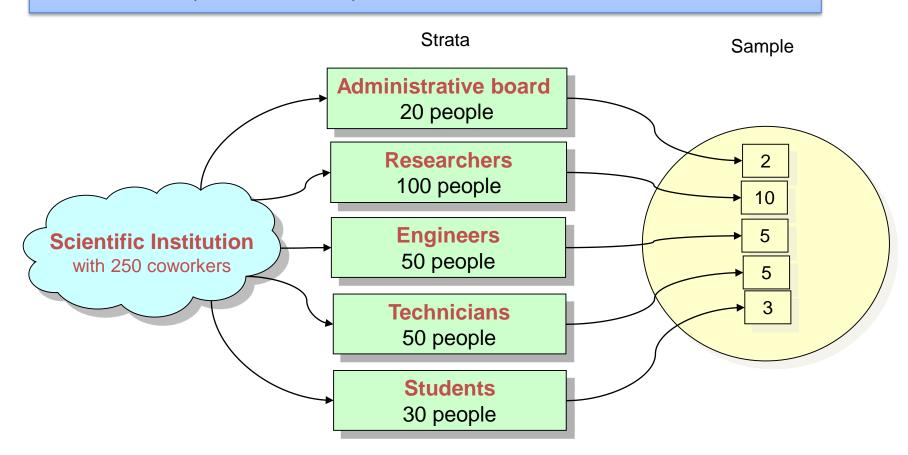
Standard deviation of the sample proportion *p*


$$\sigma_p = \sqrt{\frac{N-n}{N-1}} \sqrt{\frac{\pi(1-\pi)}{n}} \qquad \sigma_p = \sqrt{\frac{\pi(1-\pi)}{n}}$$

Standard error

The standard deviation of a point estimator.

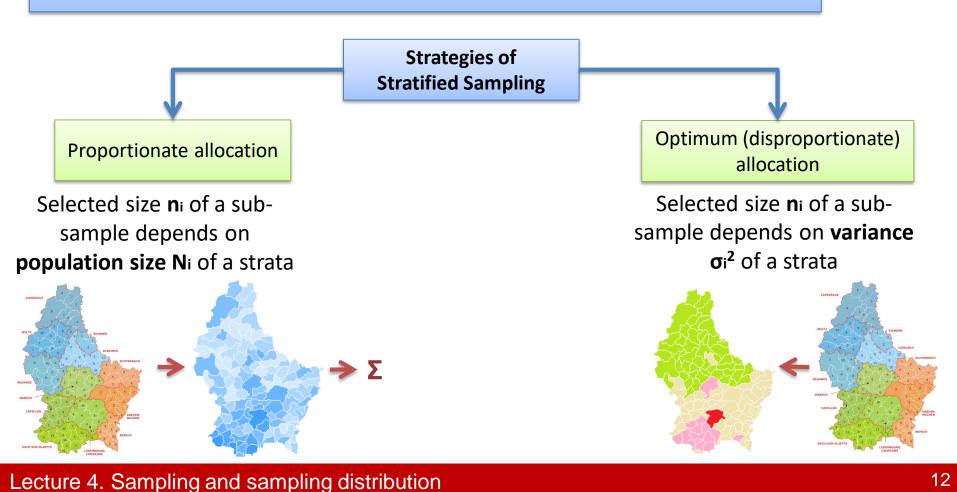
Central Limit Theorem



Stratified Sampling

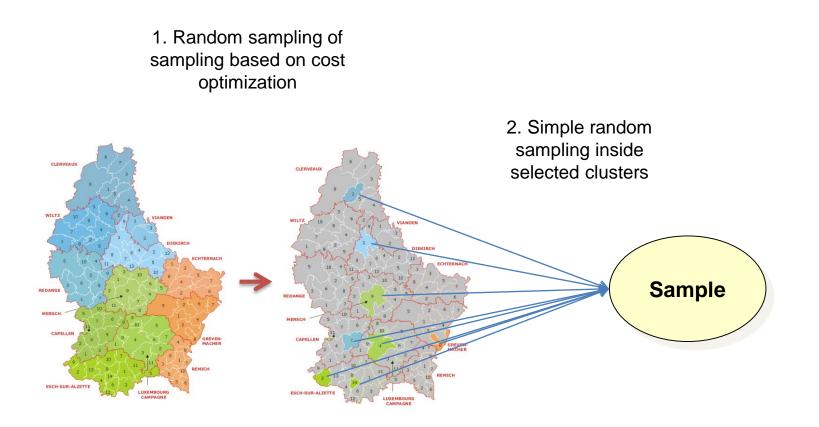
Stratified random sampling

A probability sampling method in which the population is first divided into strata and a simple random sample is then taken from each stratum.



Stratified Sampling

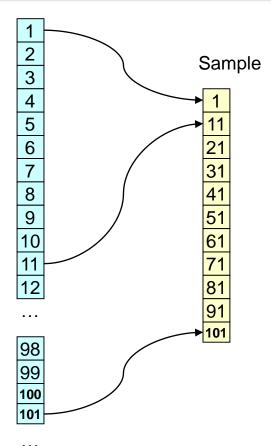
A probability sampling method in which the population is first divided into strata and a simple random sample is then taken from each stratum.



Cluster Sampling

Cluster sampling

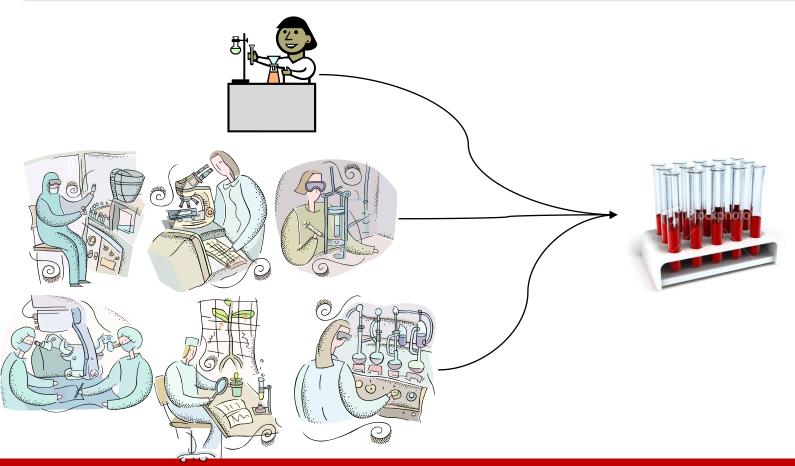
A probability sampling method in which the population is first divided into clusters and then a simple random sample of the clusters is taken.



Systematic Sample

Systematic sampling

A probability sampling method in which we randomly select one of the first *k* elements and then select every *k*-th element thereafter.



Convenience Sampling

Convenience sampling

A nonprobability method of sampling whereby elements are selected for the sample on the basis of convenience.

Judgment Sampling

Judgment sampling

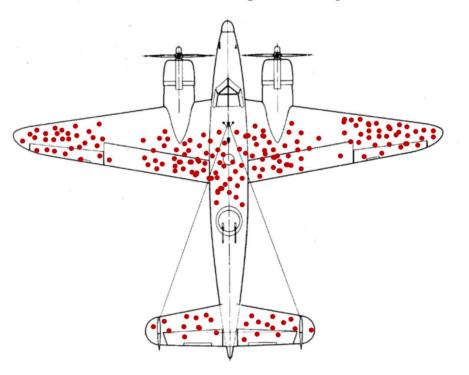
A nonprobability method of sampling whereby elements are selected for the sample based on the judgment of the person doing the study.

Perform of a selection of most confident or most experienced experts.

The wisdom of the crowd

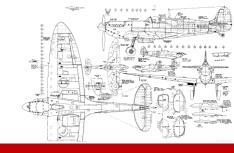
is the process of taking into account the collective opinion of a group of individuals rather than a single expert to answer a question. A large group's aggregated answers to questions involving quantity estimation has generally been found to be as good as, and often better than, the answer given by any of the individuals within the group.

The classic wisdom-of-the-crowds finding involves point estimation of a continuous quantity. At a 1906 country fair in Plymouth, eight hundred people participated in a contest to estimate the weight of a slaughtered and dressed ox. Statistician Francis Galton observed that the median guess, 1207 pounds, was accurate within 1% of the true weight of 1198 pounds.


http://www.youtube.com/watch?v=r-FonWBEb0o

AN EXAMPLE

Be Careful with Sampling!!!


'Spitfire': damage analysis

Were to put an additional protection?


Another example: paleolithic remains -> lifestyle

Thank you for your attention

to be continued...