

LUXEMBOURG INSTITUTE OF **HEALTH**

RESEARCH DEDICATED TO LIFE

Bioinformatics group, Proteome and Genome Research Unit

BIOSTATISTICS

Lecture 3

Continuous Probability Distributions

dr. Petr Nazarov

petr.nazarov@lih.lu

6-03-2020

Continuous probability distribution

- a continuous probability distribution
- uniform probability distribution
- normal probability distribution
- exponential probability distribution

RANDOM VARIABLES

A random variable that may assume either a finite

number of values or an infinite sequence of values.

A random variable that may assume any numerical

value in an interval or collection of intervals.

Random Variables

Random variable

A numerical description of the outcome of an experiment.

A random variable is always a numerical measure.

Roll a die

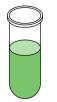
Number of calls to a reception per hour

Time between calls to a reception

Discrete random variable

Continuous random variable

Volume of a sample in a tube



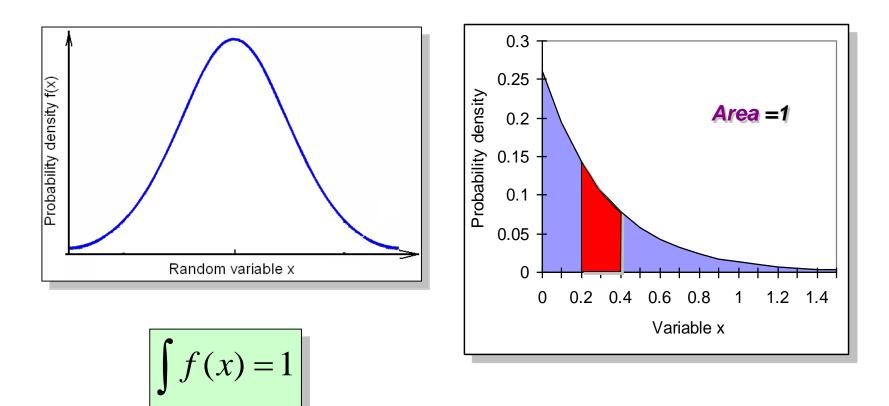
Weight, height, blood pressure, etc

CONTINUOUS PROBABILITY DISTR.

Probability Density

Probability density function

A function used to compute probabilities for a continuous random variable. The area under the graph of a probability density function over an interval represents probability.

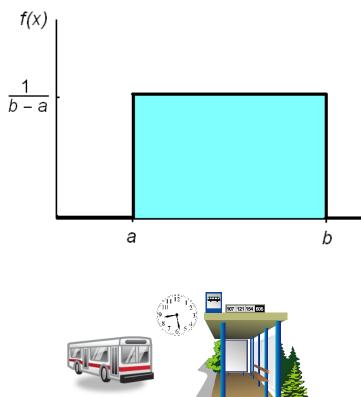


UNIFORM DISTRIBUTION

Uniform Probability Distribution

Uniform probability distribution

A continuous probability distribution for which the probability that the random variable will assume a value in any interval is the same for each interval of equal length.



$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{for } a \le x \le b\\ 0, & \text{elsewhere} \end{cases}$$

$$E(x) = \mu = \frac{a+b}{2}$$
 $Var(x) = \sigma^2 = \frac{(b-a)^2}{12}$

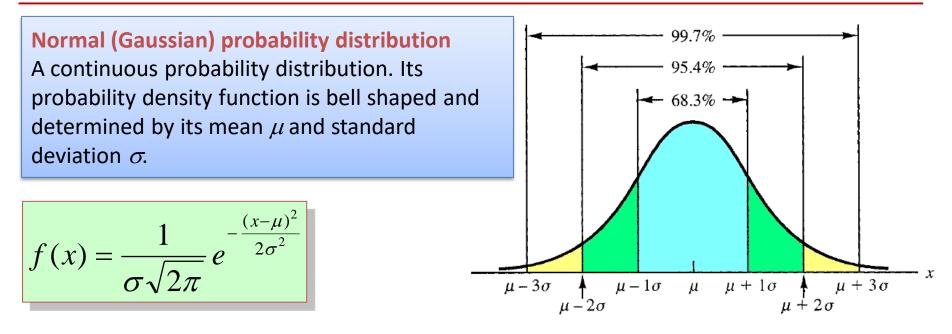
You can generate a uniform random number b/w 0 and 1 using Excel function =RAND()

Example

Χ

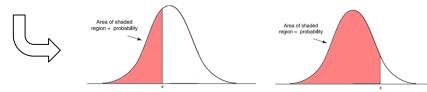
Bus 3 goes every 10 minutes. You are coming to Ketten bus station, having no idea about precise timetable. What is the distribution for the time, you may wait there?

Normal Probability Density Function



In Excel 2010 use the function:

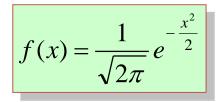
- **NORM.DIST(x,m,s,false)** for probability density function (almost never used!!!)
- = **NORM.DIST**(x,m,s,true) for cumulative probability function of normal distribution (area left to x, or probability for a value to be less then x)

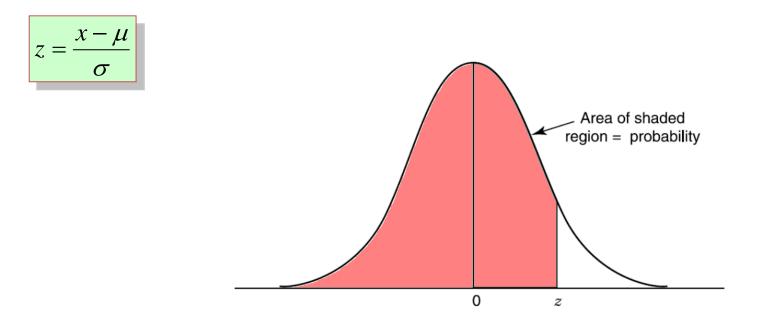


Excel 2003: NORMDIST

Standard Normal Probability Distribution

Standard normal probability distribution A normal distribution with a mean of zero and a standard deviation of one.





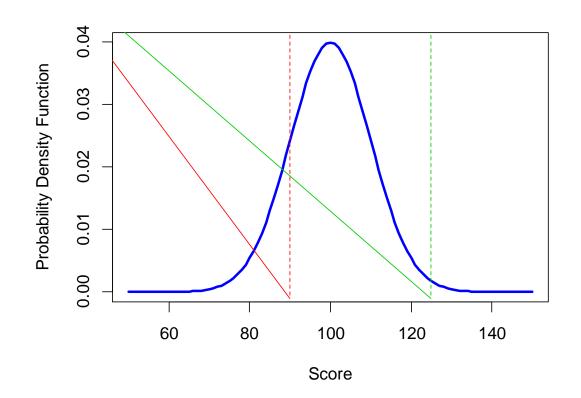
In Excel 2010 use the function:

 \Rightarrow = NORM.S.DIST(z)

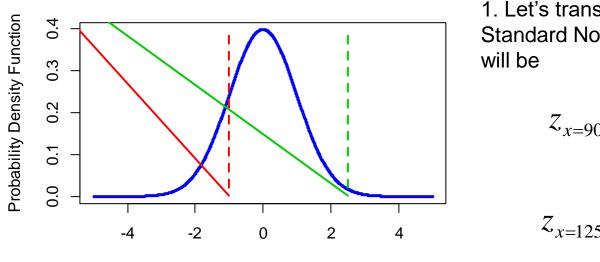
Excel 2003: NORMSDIST

Example

Suppose that the score on an aptitude test are normally distributed with a mean of 100 and a standard deviation of 10. (Some original IQ tests were purported to have these parameters.) What is the probability that a randomly selected score is below 90? What is the probability that a randomly selected score is above 125?



Glover & Mitchel. An introduction to biostatistics



1. Let's transfer from Normal distribution to Standard Normal, then z, corresponding to 90 will be

 $=\frac{90-100}{-100}=-1$

$$z_{x=125} = \frac{125 - 100}{10} = 2.5$$

z (standardized score) 2. Calculate the area under the curve before z = -1:

P(x<90) = P(z< -1) = NORM.S.DIST(-1;TRUE) = 0.159

P(x>125) = P(z>2.5) = 1- P(z<2.5) =1- NORM.S.DIST(2.5,TRUE) = 0.006

Alternatively in Excel

= NORM.DIST(90,100,10,true)

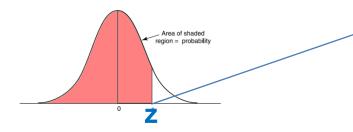
= 1-NORM.DIST(125,100,10,true)

Example: Inverted situation

Example

Suppose that the score on an aptitude test are normally distributed with a mean of 100 and a standard deviation of 10.

Find the score cutting top 5% respondent?



Assume that we know red area (probability p). Then limiting z can obtained using:

 \Rightarrow = NORM.S.INV(p)

$$\bullet$$
 = NORM.INV(p,m,s)

Two equal ways to solve:

(A) Classical (via z-score),

(A) = NORM.S.INV(1-0.05) = 1.64 (z-score)

= 1.64 * 10 + 100 = 116 (transform z into test score)

(B) Computational (via normal distrib.)

(B) = NORM.INV(1-0.05, 100, 10) = **116**

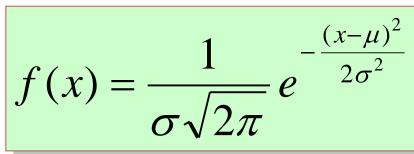
```
Excel 2003: NORMINV
```

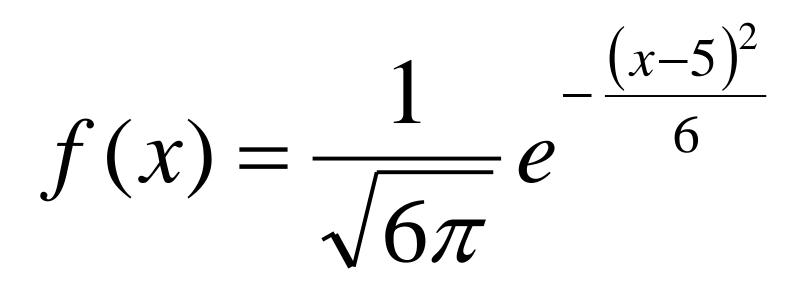
Glover & Mitchel. An introduction to biostatistics

Excel 2003: NORMSINV

Example of a Theoretical Question

A random variable x is distributed normally. Its probability density function is described by the following equation. Define the mean and variance of x.





EXPONENTIAL DISTRIBUTION

Exponential Probability Distribution

Example

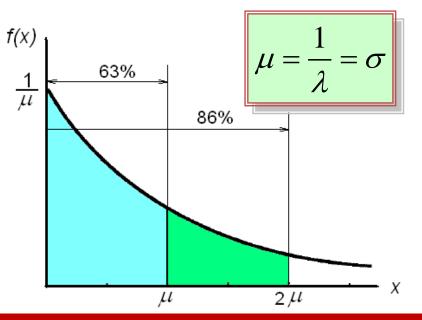
Number of calls to an Emergency Service is on average 3 per hour b/w 2.00 and 6.00 of working days. What are the distribution of the time between the calls?

Exponential probability distribution

A continuous probability distribution that is useful in computing probabilities for the time between independent random events.

Time between calls to a reception

Generally: distance/time between events in a Poisson process with mean rate λ



$$f(x) = \frac{1}{\mu} e^{-\frac{x}{\mu}}$$
 for $x \ge 0, \mu > 0$

$$f(x) = \lambda e^{-\lambda x}$$

Cumulative probability function

$$P(x \le x_0) = F(x_0) = 1 - e^{-\frac{x_0}{\mu}}$$

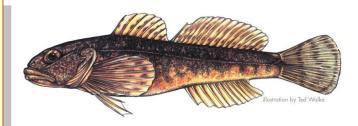
EXPONENTIAL DISTRIBUTION

Example: Exponential Distribution for Fish Counting

Example

An ichthyologist studying the *spoonhead sculpin* catches specimens in a large bag seine that she trolls through the lake. She knows from many years experience that on averages she will catch **2 fishes per trolling**. Each trolling take **~30 minutes**.

Find the probability of catching no fish in the next hour

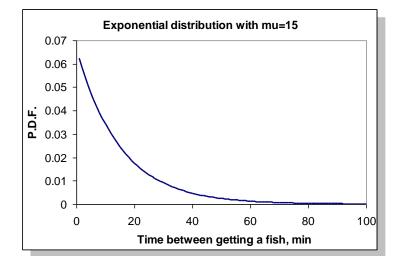


In Excel use the function:

$$\Rightarrow$$
 = EXPON.DIST(x, 1/mu, true)

Excel 2003: EXPONDIST

1. Let's calculate μ for this situation:



 $\mu = 30 / 2 = 15$ minutes

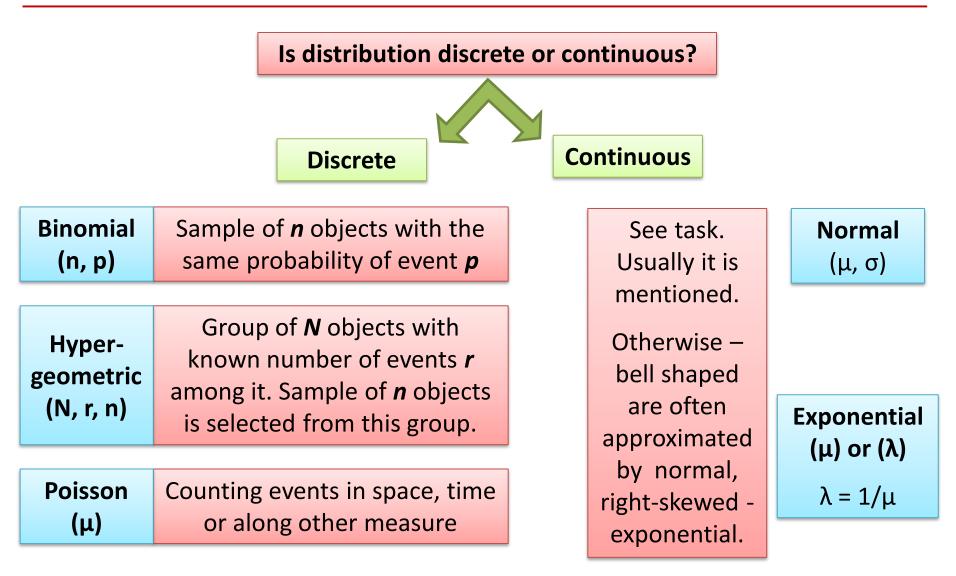
2. Use either a cumulative probability function or Excel to calculate:

$$P(x \ge 60) = 1 - P(x \le 60) = 1 - F(60) = e^{-\frac{60}{15}} \approx 0.02$$

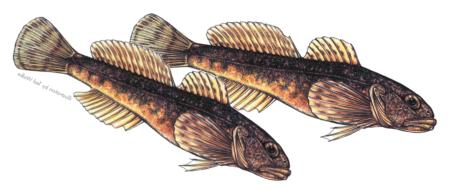
= 1 - EXPON.DIST(60; 1/15; TRUE) = 0.02

Take Home Message

Solving Tasks Ask These Questions:



Thank you for your attention



to be continued...