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L4.1 ANOVA

Why ANOVA ?

Means for more than 2 populations
We have measurements for 5 conditions. 
Are the means for these conditions 
equal?

Validation of the effects
We assume that we have several factors 
affecting our data. Which factors are 
most significant? Which can be 
neglected?

If we would use pairwise comparisons, what
will be the probability of getting error?

Number of comparisons: 10
!3!2

!55

2 C

Probability of an error: 1–(0.95)10 = 0.4

http://easylink.playstream.com/affymetrix/ambsymposium/partek_08.wvx

ANOVA
example from Partek™

Partek_ANOVA.pps
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L4.1 ANOVA

Example

As part of a long-term study of individuals 65 years of age or older, sociologists and 
physicians at the Wentworth Medical Center in upstate New York investigated the 
relationship between geographic location and depression. A sample of 60 individuals, all in 
reasonably good health, was selected; 20 individuals were residents of Florida, 20 were 
residents of New York, and 20 were residents of North Carolina. Each of the individuals 
sampled was given a standardized test to measure depression. The data collected follow; 
higher test scores indicate higher levels of depression. 
Q: Is the depression level same in all 3 locations?

H0: 1= 2= 3

Ha: not all 3 means are equal

depression.txt 

1. Good health respondents

Florida New York N. Carolina

3 8 10

7 11 7

7 9 3

3 7 5

8 8 11

8 7 8

… … …
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L4.1 ANOVA

Meaning

H0: 1= 2= 3

Ha: not all 3 means are equal
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L4.1 ANOVA

Assumption for ANOVA

Assumptions for Analysis of Variance

1. For each population, the response variable is normally distributed

2. The variance of the respond variable, denoted as 2 is the same for all of 
the populations.

3. The observations must be independent.
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L4.1 ANOVA

Let’s estimate the variance of sampling distribution. If H0

is true, then all mi belong to the same distribution

Parameter Florida New York N. Carolina

m= 5.55 8.35 7.05

overall mean= 6.98333

var= 4.5763 4.7658 8.0500

 
96.1

13

)98.605.7()98.635.8()98.655.5(
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222
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



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i

i

m

27.3996.12022  mn – this is called between-treatment estimate, works only at H0

At the same time, we can estimate the variance just by averaging out variances for each
populations:

8.5
3

05.877.458.412 







k

k

i

i



– this is called within-treatment estimate

Does between-treatment estimate and
within-treatment estimate give variances of
the same “population”?

Some Calculations
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L4.1 ANOVA

H0: 1= 2= …= k

Ha: not all k means are equal
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Test of variance 
equality

SSTR

MSE
F  valuep

p-value for the 
treatment effect

Theory
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L4.1 ANOVA

Total sum squares

 
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SSESSTRSST 

Total variability of the data include variability due to
treatment and variability due to error

   knkn

SSEfdSSTRfdSSTfd

TT 



11

).(.).(.).(.

Partitioning
The process of allocating the total sum of squares and 
degrees of freedom to the various components.

SS due to treatment

SS due to error

The Main Equation
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L4.1 ANOVA
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Example
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L4.1 ANOVA

ANOVA table 
A table used to summarize the analysis of variance computations and results. It contains 
columns showing the source of variation, the sum of squares, the degrees of freedom, 
the mean square, and the F value(s).

Let’s perform for dataset 1: “good health” depression2.txt

Example

In R use:
aov(...)

Df Sum Sq Mean Sq F value Pr(>F)   

Location     2   78.5   39.27   6.773 0.0023 **

Residuals   57  330.4    5.80                  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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L4.1 ANOVA

Factor 
Another word for the 
independent variable of interest.

Treatments 
Different levels of a factor.

depression2.txt 

Factor 1: Health 

good health

bad health 

Factor 2: Location

Florida

New York

North Carolina

Factorial experiment 
An experimental design that allows 
statistical conclusions about two or more 
factors.

Depression =  + Health + Location + HealthLocation + 

Interaction 
The effect produced when the levels of one factor interact with 
the levels of another factor in influencing the response variable.

Some Definitions
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L4.1 ANOVA

Replications 
The number of times each experimental 
condition is repeated in an experiment.

ANOVA Table
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L4.1 ANOVA

depression2.txt Factor 1: Health 

Factor 2: Location

Example

res = aov(Depression ~  Location + Health + Location*Health, Data)

summary(res)

source("http://sablab.net/scripts/drawANOVA.r")

drawANOVA(res)

ANOVA

ANOVA model:
Depression = m + Location + Health + Location * Health +  e

Factor

Location

Health

Location:Health

error

Df 

2 

1 

2 

114

Sum Sq 

73.85 

1748.03 

26.12 

981.2

Mean Sq 

36.93 

1748.03 

13.06 

8.61

F value 

4.29 

203.094 

1.517 

p-value 

1.5981e-02 

4.3961e-27 

2.2373e-01 

        

 

* 

*** 

 

Location Health Location*Health error

F
-s

ta
ti
s
ti
tc

s

0
5

0
1

0
0

2
0

0
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L4.1 ANOVA

Experimental Design

Aware of Batch Effect !
When designing your experiment always remember about various factors which can 
effect your data: batch effect, personal effect, lab effect... 

Day 1

Day 2

T = +30C

T = +10C

?
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L4.1 ANOVA

Experimental Design

Completely randomized design 
An experimental design in which the treatments 
are randomly assigned to the experimental units.

We can nicely randomize:

Day effect

Batch effect
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L4.1 ANOVA

Experimental Design

Blocking 
The process of using the same or similar experimental units for all treatments. The 
purpose of blocking is to remove a source of variation from the error term and hence 
provide a more powerful test for a difference in population or treatment means.

Day 1

Day 2
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L4.1 ANOVA

A good suggestion… 

Block what you can block, randomize 
what you cannot, and try to avoid 
unnecessary factors
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L4.1 ANOVA

################################################################################

# L4.1 ANOVA

################################################################################

## clear memory

rm(list = ls())

## load data

Data = read.table("http://edu.sablab.net/data/txt/depression2.txt",header=T,sep="\t")

str(Data)

DataGH = Data[Data$Health == "good",]

## build 1-factor ANOVA model

res1 = aov(Depression ~  Location, DataGH)

summary(res1)

## build the ANOVA model

res2 = aov(Depression ~  Location + Health + Location*Health, Data)

## show the ANOVA table

summary(res2)

## Load function

source("http://sablab.net/scripts/drawANOVA.r")

x11()

drawANOVA(res2)
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L4.5. Linear Regression

Dependent and Independent Variables

mice.xls 
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L4.5. Linear Regression

Dependent and Independent Variables
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L4.5. Linear Regression

Example

Dependent variable 
The variable that is being predicted or explained. It is denoted by y.

Independent variable 
The variable that is doing the predicting or explaining. It is denoted by x.

Temperature Cell Number

20 83

21 139

22 99

23 143

24 164

25 233

26 198

27 261

28 235

29 264

30 243

31 339

32 331

33 346

34 350

35 368

36 360

37 397

38 361

39 358

40 381
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x

y Cells are grown under different 
temperature conditions from 20 to 
40. A researched would like to find a 
dependency between T and cell 
number. 

cells.txt
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L4.5. Linear Regression

Regression Model and Regression Line

Simple linear regression 
Regression analysis involving one independent variable and one dependent variable in which 
the relationship between the variables is approximated by a straight line.

Building a regression means finding and tuning the model to explain the behaviour of the data
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L4.5. Linear Regression

Regression Model and Regression Line

  01)( xxy

Model for a simple linear regression:
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Regression model 
The equation describing how y is related to x and an error term; in simple linear 
regression, the regression model is y = 0 + 1x + 

Regression equation 
The equation that describes how the mean or expected value of the dependent variable 
is related to the independent variable; in simple linear regression, 
E(y) =0 + 1x
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L4.5. Linear Regression

Regression Model and Regression Line

  01)( xxy
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L4.5. Linear Regression

Estimation

Estimated regression equation 
The estimate of the regression equation developed from sample data 
by using the least squares method. For simple linear regression, the 
estimated regression equation is y = b0 + b1x

cells.xls 

1. Make a scatter plot for the data.
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2. Right click to “Add Trendline”. Show equation.

y = 15.339x - 191.01
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  01)( bxbxyE 
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L4.5. Linear Regression

Overview
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L4.5. Linear Regression

Slope and Intercept

Least squares method 
A procedure used to develop the estimated regression equation. 

The objective is to minimize   
2ˆ

ii yy

  
 21

1

x

yixi

mx

mymx
b







xy mbmb 10 Intercept:

Slope:
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L4.5. Linear Regression

Coefficient of Determination

 
2

ˆ  ii yySSE

Sum squares due to error
y = 15.339x - 191.01
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 2  yi mySST

Sum squares total

 2ˆ  yi mySSR

Sum squares due to regression

SSESSRSST 

The Main Equation
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L4.5. Linear Regression

ANOVA and Regression
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L4.5. Linear Regression

Coefficient of Determination

Coefficient of determination 
A measure of the goodness of fit of the estimated regression 
equation. It can be interpreted as the proportion of the 
variability in the dependent variable y that is explained by the 
estimated regression equation.

 
2

ˆ  ii yySSE

 2  yi mySST

 2ˆ  yi mySSR

SSESSRSST 

SST

SSR
R 2

y = 15.339x - 191.01

R
2
 = 0.9041
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Correlation coefficient 
A measure of the strength of the linear relationship between 
two variables (previously discussed in Lecture 1).

  2
1sign Rbr 
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L4.5. Linear Regression

Assumptions

  01)( xxy

Assumptions for Simple Linear Regression

1. The error term  is a random variable with 0 mean, i.e. E[]=0

2. The variance of , denoted by  2, is the same for all values of x

3. The values of  are independent

3. The term  is a normally distributed variable
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L4.5. Linear Regression

Estimation of  2

2

2




n

SSE
MSEs

2


n

SSE
MSEs

i-th residual 
The difference between the observed value of the dependent variable and the value predicted using 
the estimated regression equation; for the i-th observation the i-th residual is: ii yy ˆ

Mean square error 
The unbiased estimate of the variance of the error term 2. It is denoted by MSE or s2.
Standard error of the estimate: the square root of the mean square error, denoted by s. It is the 
estimate of , the standard deviation of the error term .
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L4.5. Linear Regression

Sampling Distribution for b1

  01)( xxy

01)(ˆ bxbxy 

11][ bEExpected value

 2
1

 



xi

b

mx


Variance

If assumptions for  are fulfilled, then the sampling distribution for b1 is
as follows:

Distribution: normal

Interval Estimation for 1

 

 2
2
2/11

 




xi

n

mx

tb


 

= Standard Error

 SEtb n 2

2/11

 
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L4.5. Linear Regression

Test for Significance

H0: 1 = 0 insignificant

Ha: 1 0

1. Build a t-test statistics.

 211

1

  xi
b

mx
s

bb
t



2. Calculate p-value for t

MSE

MSR
F 

1. Build a F-test statistics.

2. Calculate a p-value
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L4.5. Linear Regression

Example

cells.xls In Excel use the function:
= INTERCEPT(y,x)

= SLOPE(y,x)

1. Calculate manually b1 and b0

Intercept b0= -191.008119

Slope b1= 15.3385723

Data  Data Analysis  Regression2. Let’s do it automatically

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.950842308

R Square 0.904101095

Adjusted R Square 0.899053784

Standard Error 31.80180903

Observations 21

ANOVA

df SS MS F Significance F

Regression 1 181159.2853 181159.3 179.1253 4.01609E-11

Residual 19 19215.7461 1011.355

Total 20 200375.0314

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -191.0081194 35.07510626 -5.445689 2.97E-05 -264.4211603 -117.5950784 -264.4211603 -117.5950784

X Variable 1 15.33857226 1.146057646 13.38377 4.02E-11 12.93984605 17.73729848 12.93984605 17.73729848
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L4.5. Linear Regression

Confidence and Prediction

Confidence interval 
The interval estimate of the mean value of y for a given value of x. 

Prediction interval 
The interval estimate of an individual value of y for a given value of x.
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L4.5. Linear Regression

Example

cells.txt 

x = data$Temperature

y = data$Cell.Number

res = lm(y~x) 

res

summary(res)

# draw the data

x11()

plot(x,y)

# draw the regression and its confidence (95%)

lines(x, predict(res,int = "confidence")[,1],col=4,lwd=2)

lines(x, predict(res,int = "confidence")[,2],col=4)

lines(x, predict(res,int = "confidence")[,3],col=4)

# draw the prediction for the values (95%)

lines(x, predict(res,int = "pred")[,2],col=2)

lines(x, predict(res,int = "pred")[,3],col=2)

20 25 30 35 40
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L4.5. Linear Regression

Residuals
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L4.5. Linear Regression

Example2

rana.txt 

A biology student wishes to determine the relationship between temperature
and heart rate in leopard frog, Rana pipiens. He manipulates the temperature in
2 increment ranging from 2 to 18C and records the heart rate at each interval.
His data are presented in table rana.txt

1) Build the model and provide the p-value for linear dependency
2) Provide interval estimation for the slope of the dependency
3) Estmate 95% prediction interval for heart rate at 15
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L4.5. Linear Regression

Multiple Regression
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L4.5. Linear Regression

Multiple Regression
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L4.5. Linear Regression

Non-Linear Regression

 
 
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xxxyPyE


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
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...exp1

...exp
,...,,|1)(

22110

22110

21
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Questions ?

Thank you for your 
attention

to be continued…


